Local evaporation controlled by regional atmospheric circulation in the Altiplano of the Atacama Desert

Author:

Lobos-Roco FelipeORCID,Hartogensis OscarORCID,Vilà-Guerau de Arellano JordiORCID,de la Fuente Alberto,Muñoz RicardoORCID,Rutllant José,Suárez FranciscoORCID

Abstract

Abstract. We investigate the influence of regional atmospheric circulation on the evaporation of a saline lake in the Altiplano (also known as the Andean Plateau) region of the Atacama Desert. For that, we conducted a field experiment in the Salar del Huasco (SDH) basin (135 km east of the Pacific Ocean), in November 2018. The measurements were based on surface energy balance (SEB) stations and airborne observations. Additionally, we simulate the meteorological conditions on a regional scale using the Weather Research and Forecasting Model. Our findings show two evaporation regimes: (1) a morning regime controlled by local conditions, in which SEB is dominated by the ground heat flux (∼0.5 of net radiation), very low evaporation (LvE<30 W m−2) and wind speed <1 m s−1; and (2) an afternoon regime controlled by regional-scale forcing that leads to a sudden increase in wind speed (>15 m s−1) and a jump in evaporation to >500 W m−2. While in the morning evaporation is limited by very low turbulence (u*∼0.1 m s−1), in the afternoon strong winds (u*∼0.65 m s−1) enhance mechanical turbulence, increasing evaporation. We find that the strong winds in addition to the locally available radiative energy are the principal drivers of evaporation. These winds are the result of a diurnal cyclic circulation between the Pacific Ocean and the Atacama Desert. Finally, we quantify the advection and entrainment of free-tropospheric air masses driven by boundary layer development. Our research contributes to untangling and linking local- and regional-scale processes driving evaporation across confined saline lakes in arid regions.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Wageningen UR

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3