Variability and changes of Arctic sea ice draft distribution – submarine sonar measurements revisited

Author:

Oikkonen A.,Haapala J.

Abstract

Abstract. Changes in the mean sea ice thickness and concentration in the Arctic are well known. However, quantitative information about changes in the ice thickness distribution and the composition of the pack ice is lacking. In this paper we determine the ice draft distributions, mean and modal thicknesses, and their regional and seasonal variability in the Arctic for the time period 1975–2000. We compare characteristics of the Arctic pack ice for the years 1975–1987 and 1988–2000. These periods represent different large-scale atmospheric circulation modes and sea ice circulation patterns, most evident in clearly weaker Beaufort Gyre and stronger as well as westward shifted Transpolar Drift during the later period. The comparison of these two periods reveals that the peak of sea ice draft distributions has narrowed and shifted toward thinner ice, with reductions in both mean and modal ice draft. These noticeable changes are attributed to the loss of thick, mostly deformed ice. Springtime, loss of ice volume with draft greater than 5 m exceeds 35 % in all regions except the Nansen Basin, with as much as 45 % or more at the North Pole and in the Eastern Arctic. Autumn volume reduction, mostly of deformed ice, exceeds 40 % in the Canada Basin only, but is above 30 % also in the Beaufort and Chukchi Seas. During the later period, the volume of ice category consisting thin, mostly level first-year ice, is clearly larger than during the former period, especially in the spring. In the Beaufort Sea region, changes in the composition of ice cover have resulted in a shift of modal draft from level multiyear ice draft range to values of level first-year ice. The regional and seasonal variability of sea ice draft has decreased, since the thinning has been most pronounced in regions with the thickest pack ice (the Western Arctic), and during the spring (0.6–0.8 m per decade).

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3