Silicate weathering and CO<sub>2</sub> consumption within agricultural landscapes, the Ohio-Tennessee River Basin, USA

Author:

Fortner S. K.,Lyons W. B.,Carey A. E.,Shipitalo M. J.,Welch S. A.,Welch K. A.

Abstract

Abstract. Myriad studies have shown the extent of human alteration to global biogeochemical cycles. Yet, there is only a limited understanding of the influence that humans have over silicate weathering fluxes; fluxes that have regulated atmospheric carbon dioxide concentrations and global climate over geologic timescales. Natural landscapes have been reshaped into agricultural ones to meet food needs for growing world populations. These processes modify soil properties, alter hydrology, affect erosion, and consequently impact water-soil-rock interactions such as chemical weathering. Dissolved silica (DSi), Ca2+, Mg2+, NO3–, and total alkalinity were measured in water samples collected from five small (0.0065 to 0.383 km2) gauged watersheds at the North Appalachian Experimental Watershed (NAEW) near Coshocton, Ohio, USA. The sampled watersheds in this unglaciated region include: a forested site (70+ year stand), mixed agricultural use (corn, forest, pasture), an unimproved pasture, tilled corn, and a recently (<3 yr) converted no-till corn field. The first three watersheds had perennial streams, but the two corn watersheds only produced runoff during storms and snowmelt. For the perennial streams, total discharge was an important control of dissolved silicate transport. Median DSi yields (2210–3080 kg km−2 yr–1) were similar to the median of annual averages between 1979–2009 for the much larger Ohio-Tennessee River Basin (2560 kg km−2 yr–1). Corn watersheds, which only had surface runoff, had substantially lower DSi yields (<530 kg km−2 yr–1) than the perennial-flow watersheds. The lack of contributions from Si-enriched groundwater largely explained their much lower DSi yields with respect to sites having baseflow. A significant positive correlation between the molar ratio of (Ca2++Mg2+)/alkalinity to DSi in the tilled corn and the forested site suggested, however, that silicate minerals weathered as alkalinity was lost via enhanced nitrification resulting from fertilizer additions to the corn watershed and from leaf litter decomposition in the forest. This same relation was observed in the Ohio-Tennessee River Basin where dominant landuse types include both agricultural lands receiving nitrogenous fertilizers and forests. Greater gains in DSi with respect to alkalinity losses in the Ohio-Tennessee River Basin than in the NAEW sites suggested that soils derived from younger Pleistocene glacial-till may yield more DSi relative to nitrogenous fertilizer applications than the older NAEW soils. Because silicate weathering occurs via acids released from nitrification, CO2 consumption estimates based on the assumption that silicate weathers via carbonic acid alone may be especially over-estimated in fertilized agricultural watersheds with little baseflow (i.e. 67 % overestimated in the corn till watershed). CO2 consumption estimates based on silicate weathering may be as much as 20 % lower than estimates derived from carbonic acid weathering alone for the Ohio-Tennessee River Basin between 1979–2009. Globally, this may mean that younger landscapes with soils favorable for agriculture are susceptible to fertilizer-enhanced silicate weathering. Increases in silicate weathering, however, may be offset by shifts in hydrology resulting from agricultural land management practices or even from soil silica losses in response to repeated acidification.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3