Improving short-term forecasting during ramp events by means of Regime-Switching Artificial Neural Networks

Author:

Gallego C.,Costa A.,Cuerva A.

Abstract

Abstract. Ramp events are large rapid variations within wind power time series. Ramp forecasting can benefit from specific strategies so as to particularly take into account these shifts in the wind power output dynamic. In the short-term context (characterized by prediction horizons from minutes to a few days), a Regime-Switching (RS) model based on Artificial Neural Nets (ANN) is proposed. The objective is to identify three regimes in the wind power time series: Ramp-up, Ramp-down and No-ramp regime. An on-line regime assessment methodology is also proposed, based on a local gradient criterion. The RS-ANN model is compared to a single-ANN model (without regime discrimination), concluding that the regime-switching strategy leads to significant improvements for one-hour ahead forecasts, mainly due to the improvements obtained during ramp-up events. Including other explanatory variables (NWP outputs, local measurements) during the regime assessment could eventually improve forecasts for further horizons.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Pollution,Geophysics,Ecological Modeling

Reference11 articles.

1. Costa, A.: Mathematical/Statistical and Physical/Meteorological Models for Short-term Prediction of Wind Farms Output, Ph.D. thesis, Escuela Técnica Superior de Ingenieros Industriales (Universidad Politécnica de Madrid), 2005.

2. Cutler, N., Kay, M., Jacka, K., and Nielsen, T. S.: Detecting, categorizing and forecasting large ramps in wind farm power output using meteorological observations and WPPT, Wind Energy, 10, 453–470, 2007.

3. Giebel, G.: The state of the art in short-term prediction of wind power – A literature overview, Tech. rep., ANEMOS EU project, 2003.

4. Greaves, B., Collins, J., Parkes, J., and Tindal, A.: Temporal Forecast Uncertainty for Ramp Events, Wind Engineering, 33, 309–320, 2009.

5. Hornik, K., Stinchcombe, M., and White, H.: Multilayer feedforward networks are universal approximators, Neural Networks, 2, 359–366, 1989.

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3