A Kalman filter application to a spectral wave model

Author:

Pinto J. P.,Bernadino M. C.,Pires Silva A.

Abstract

Abstract. A sequential time dependent data assimilation scheme based on the Kalman filter is applied to a spectral wave model. Usually, the first guess covariance matrices used in optimal interpolation schemes are exponential spreading functions, which remain constant. In the present work the first guess correlation errors evolve in time according to the dynamic constraints of the wave model. A system error noise is deduced and used to balance numerical errors. The assimilation procedure is tested in a standard situation of swell propagation, where the Kalman filter is used to assimilate the significant wave height. The evolution of the wave field is described by a linear two-dimensional advection equation and the propagation of the error covariance matrix is derived according to Kalman's linear theory. Model simulations were performed in a 2-dimensional domain with deep-water conditions, a relatively small surface area and without wind forcing or dissipation. A true state simulation and a first guess simulation were used to illustrate the assimilation outcome, showing a reasonable performance of the Kalman filter.

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3