Probabilistic flood inundation mapping through copula Bayesian multi-modeling of precipitation products

Author:

Gomez Francisco JavierORCID,Jafarzadegan KeighobadORCID,Moftakhari HamedORCID,Moradkhani HamidORCID

Abstract

Abstract. Accurate prediction and assessment of extreme flood events are crucial for effective disaster preparedness, response, and mitigation strategies. One crucial factor influencing the intensity and magnitude of extreme flood events is precipitation. Precipitation patterns, particularly during intense weather phenomena such as hurricanes, can play a significant role in triggering widespread flooding over densely populated areas. Traditional flood prediction models typically rely on single-source precipitation data, which may not adequately capture the inherent variability and uncertainty associated with extreme events due to certain limitations in the precipitation generation framework, availability, or both spatial and temporal resolutions. Moreover, in coastal regions, the complex interaction between local precipitation, river flows, and coastal processes (i.e., storm tide) can result in compound flooding and amplify the overall impact and complexity of flooding patterns. This study presents an implementation of the global copula-embedded Bayesian model averaging (BMA) (Global Cop-BMA) framework for improving the accuracy and reliability of extreme flood modeling. The proposed framework integrates a collection of precipitation products with different spatiotemporal resolutions to account for uncertainty in forcing data for hydrodynamic modeling and generating probabilistic flood inundation maps. The methodology is evaluated with respect to Hurricane Harvey, which was a catastrophic weather event characterized by intense precipitation and compound flooding processes over the city of Houston in the state of Texas in 2017. The results show a significant improvement in predictive accuracy compared to those based on a single precipitation product (e.g., the Nash–Sutcliffe efficiency (NSE) performance of a single quantitative precipitation estimation (QPE) is in the range of 0.695 to 0.846, while the Cop-BMA yields an NSE of 0.858), demonstrating the merits of the Global Cop-BMA approach. Furthermore, this research extends its impact by generating probabilistic flood extension maps that account not only for the primary influence of precipitation as a flood driver but also for the intricate nature of compound flooding processes in coastal environments.

Funder

U.S. Army Corps of Engineers

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3