Addressing class imbalance in soil movement predictions

Author:

Kumar PraveenORCID,Priyanka Priyanka,Uday Kala VenkataORCID,Dutt Varun

Abstract

Abstract. Landslides threaten human life and infrastructure, resulting in fatalities and economic losses. Monitoring stations provide valuable data for predicting soil movement, which is crucial in mitigating this threat. Accurately predicting soil movement from monitoring data is challenging due to its complexity and inherent class imbalance. This study proposes developing machine learning (ML) models with oversampling techniques to address the class imbalance issue and develop a robust soil movement prediction system. The dataset, comprising 2 years (2019–2021) of monitoring data from a landslide in Uttarakhand, has a 70:30 ratio of training and testing data. To tackle the class imbalance problem, various oversampling techniques, including the synthetic minority oversampling technique (SMOTE), K-means SMOTE, borderline-SMOTE, and adaptive SMOTE (ADASYN), were applied to the training dataset. Several ML models, namely random forest (RF), extreme gradient boosting (XGBoost), light gradient boosting machine (LightGBM), adaptive boosting (AdaBoost), category boosting (CatBoost), long short-term memory (LSTM), multilayer perceptron (MLP), and a dynamic ensemble, were trained and compared for soil movement prediction. A 5-fold cross-validation method was applied to optimize the ML models on the training data, and the models were tested on the testing set. Among these ML models, the dynamic ensemble model with K-means SMOTE performed the best in testing, with an accuracy, precision, and recall rate of 0.995, 0.995, and 0.995, respectively, and an F1 score of 0.995. Additionally, models without oversampling exhibited poor performance in training and testing, highlighting the importance of incorporating oversampling techniques to enhance predictive capabilities.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3