Simulating sea level extremes from synthetic low-pressure systems
-
Published:2024-05-23
Issue:5
Volume:24
Page:1835-1842
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Särkkä JaniORCID, Räihä Jani, Rantanen MikaORCID, Kämäräinen MattiORCID
Abstract
Abstract. In this article we present a method for numerical simulations of extreme sea levels using synthetic low-pressure systems as atmospheric forcing. Our simulations can be considered to be estimates of the high sea levels that may be reached when a low-pressure system of high intensity and optimal track passes the studied region. We test the method using sites located along the Baltic Sea coast and simulate synthetic cyclones with various tracks. To model the effects of the cyclone properties on sea level, we simulate internal Baltic Sea water level variations with a numerical two-dimensional hydrodynamic model, forced by an ensemble of time-dependent wind and air-pressure fields from synthetic cyclones. The storm surges caused by the synthetic cyclones come on top of the mean water level of the Baltic Sea, for which we used a fixed upper estimate of 100 cm. We find high extremes in the northern Bothnian Bay and in the eastern Gulf of Finland, where the sea level extreme due to the synthetic cyclone reaches up to 3.5 m. In the event that the mean water level of the Baltic Sea has a maximal value (1 m) during the cyclone, the highest sea levels of 4.5 m could thus be reached. We find our method to be suitable for use in further studies of sea level extremes.
Funder
Ydinjätehuoltorahasto
Publisher
Copernicus GmbH
Reference32 articles.
1. Andrée, E., Drews, M., Su, J., Larsen, M. A. D., Drønen, N., and Madsen, K. S.: Simulating wind-driven extreme sea levels: Sensitivity to wind speed and direction, Weather Clim. Extrem., 36, 100422, https://doi.org/10.1016/j.wace.2022.100422, 2022. a, b, c 2. Apukhtin, A., Bessan, G., Gordeeva, S., Klevannaya, M., and Klevannyy, K.: Simulation of the probable maximum flood in the area of the Leningrad Nuclear Power Plant with account of wind waves, Russ. Meteorol. Hydrol., 42, 113–120, 2017. a, b 3. Arns, A., Wahl, T., Haigh, I., Jensen, J., and Pattiaratchi, C.: Estimating extreme water level probabilities: A comparison of the direct methods and recommendations for best practise, Coast. Eng., 81, 51–66, https://doi.org/10.1016/j.coastaleng.2013.07.003, 2013. a 4. Averkiev, A. S. and Klevannyy, K. A.: A case study of the impact of cyclonic trajectories on sea-level extremes in the Gulf of Finland, Cont. Shelf Res., 30, 707–714, https://doi.org/10.1016/j.csr.2009.10.010, 2010. a, b, c, d, e, f, g 5. Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
|
|