Impact-based flood forecasting in the Greater Horn of Africa

Author:

Alfieri LorenzoORCID,Libertino AndreaORCID,Campo LorenzoORCID,Dottori FrancescoORCID,Gabellani Simone,Ghizzoni Tatiana,Masoero Alessandro,Rossi LauroORCID,Rudari Roberto,Testa Nicola,Trasforini EvaORCID,Amdihun Ahmed,Ouma Jully,Rossi Luca,Tramblay YvesORCID,Wu Huan,Massabò MarcoORCID

Abstract

Abstract. Every year Africa is hit by extreme floods which, combined with high levels of vulnerability and increasing population exposure, often result in humanitarian crises and population displacement. Impact-based forecasting and early warning for natural hazards is recognized as a step forward in disaster risk reduction, thanks to its focus on people, livelihoods, and assets at risk. Yet, the majority of the African population is not covered by any sort of early warning system. This article describes the setup and the methodological approach of Flood-PROOFS East Africa, an impact-based riverine flood forecasting and early warning system for the Greater Horn of Africa (GHA), with a forecast range of 5 d. The system is based on a modeling cascade relying on distributed hydrological simulations forced by ensemble weather forecasts, link to inundation maps for specific return period, and application of a risk assessment framework to estimate population and assets exposed to upcoming floods. The system is operational and supports the African Union Commission and the Disaster Operation Center of the Intergovernmental Authority on Development (IGAD) in the daily monitoring and early warning from hydro-meteorological disasters in eastern Africa. Results show a first evaluation of the hydrological reanalysis at 78 river gauging stations and a semi-quantitative assessment of the impact forecasts for the catastrophic floods in Sudan and in the Nile River basin in summer 2020. More extensive quantitative evaluation of the system performance is envisaged to provide its users with information on the model reliability in forecasting extreme events and their impacts.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3