Characteristics and mechanisms of near-surface negative atmospheric electric field anomalies preceding the 5 September 2022, Ms 6.8 Luding earthquake in China

Author:

Wu Lixin,Wang Xiao,Qi Yuan,Lu Jingchen,Mao WenfeiORCID

Abstract

Abstract. A magnitude 6.8 strike-slip earthquake (EQ) struck Luding, Sichuan Province, China, on 5 September 2022, resulting in significant damage to nearby Ganzi Prefecture and the city of Ya'an. In this research, the near-surface atmospheric electric field (AEF) recorded at four sites 15 d before the Luding EQ was analyzed and differentiated, and multisource auxiliary data including precipitation, cloud base height, and low cloud cover were used at the same time. Nine possible seismic AEF anomalies at four sites were obtained preliminarily. Accordingly, microwave brightness temperature (MBT) data, which are very sensitive to the surface dielectrics and are closely related to the air ionization, together with surface soil moisture, lithology, and a 3D-simulated crustal stress field, were jointly analyzed to confirm the seismic relations of the obtained negative AEF anomalies. The geophysical environment for crustal high-stress concentration, positive charge carrier transfer, and surface accumulation was demonstrated to exist and to meet the conditions necessary to generate local negative AEF anomalies. Furthermore, to deal with the spatial disparities in sites and regions with potential atmospheric ionization, near-surface wind field data were employed to scrutinize the reliability of the AEF anomalies by comprehensively analyzing the spatial relationships among surface charges accumulation areas, wind direction and speed, and the AEF sites. Finally, four negative AEF anomalies were deemed to be closely related to the Luding EQ, and the remaining five possible anomalies were ruled out. A possible mechanism of negative AEF anomalies before the Luding EQ is proposed: positive charge carriers were generated from the underground high-stress concentration areas and then transferred to and accumulated on the ground surface to ionize the surface air, thus disturbing the AEF above the ground. This study presents a method for identifying and analyzing seismic AEF anomalies and is also beneficial for the examination of the pre-earthquake coupling process between the coversphere and the atmosphere.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3