Brief communication: SWM – stochastic weather model for precipitation-related hazard assessments using ERA5-Land data

Author:

Whitehead Melody GwynethORCID,Bebbington Mark StephenORCID

Abstract

Abstract. Long-term multi-hazard and risk assessments are produced by combining many hazard-model simulations, each using a slightly different set of inputs to cover the uncertainty space. While most input parameters for these models are relatively well constrained, atmospheric parameters remain problematic unless working on very short timescales (hours to days). Precipitation is a key trigger for many natural hazards including floods, landslides, and lahars. This work presents a stochastic weather model that takes openly available ERA5-Land data and produces long-term, spatially varying precipitation data that mimic the statistical dimensions of real data. This allows precipitation to be robustly included in hazard-model simulations. A working example is provided using 1981–2020 ERA5-Land data for the Rangitāiki–Tarawera catchment, Te Moana-a-Toi / Bay of Plenty, New Zealand.

Publisher

Copernicus GmbH

Reference19 articles.

1. Arnaud, P., Bouvier, C., Cisneros, L., and Dominguez, R.: Influence of rainfall spatial variability on flood prediction, J. Hydrol., 260, 216–230, https://doi.org/10.1016/S0022-1694(01)00611-4, 2002.

2. Burton, A., Kilsby, C., Fowler, H., Cowpertwait, P., and O'Connell, P.: RainSim: A spatial–temporal stochastic rainfall modelling system, Environ. Modell. Softw., 23, 1356–1369, https://doi.org/10.1016/j.envsoft.2008.04.003, 2008.

3. Chappell, P. R.: The climate and weather of Bay of Plenty, 3rd edn., NIWA Science and Technology Series, Number 62, https://niwa.co.nz/static/BOP ClimateWEB.pdf (last access: 23 August 2023), 2013.

4. DiCiccio, T. and Efron, B.: Bootstrap Confidence Intervals, Stat. Sci., 11, 189–212, https://www.jstor.org/stable/2246110 (last access: 5 June 2024), 1996.

5. Fox, J. and Weisberg, S.: An R Companion to Applied Regression, 3rd edn., Sage Publications, Thousand Oaks CA, USA, 576 pp., https://socialsciences.mcmaster.ca/jfox/Books/Companion/ (last access: 5 June 2024), 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3