Evaluating post-wildfire debris-flow rainfall thresholds and volume models at the 2020 Grizzly Creek Fire in Glenwood Canyon, Colorado, USA
-
Published:2024-06-28
Issue:6
Volume:24
Page:2093-2114
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Rengers Francis K.ORCID, Bower Samuel, Knapp Andrew, Kean Jason W., vonLembke Danielle W., Thomas Matthew A., Kostelnik Jaime, Barnhart Katherine R.ORCID, Bethel Matthew, Gartner Joseph E., Hille Madeline, Staley Dennis M., Anderson Justin K., Roberts Elizabeth K., DeLong Stephen B., Lane Belize, Ridgway Paxton, Murphy Brendan P.
Abstract
Abstract. As wildfire increases in the western United States, so do postfire debris-flow hazards. The U.S. Geological Survey (USGS) has developed two separate models to estimate (1) rainfall intensity thresholds for postfire debris-flow initiation and (2) debris-flow volumes. However, the information necessary to test the accuracy of these models is seldom available. Here, we studied how well these models performed over a 2-year period in the 2020 Grizzly Creek Fire burn perimeter in Glenwood Canyon, Colorado, USA, through the development of a debris-flow response inventory. The study area had the advantage of a network of 11 rain gauges for rainfall intensity measurements and repeat lidar data for volume estimates. Our observations showed that 89 % of observed debris flows in the first year postfire were triggered by rainfall rates higher than the fire-wide rainfall threshold produced by the current USGS operational model (M1). No debris flows were observed in the second year postfire, despite eight rainstorms with intensities higher than the modeled rainfall threshold. We found that the operational model for debris-flow initiation rainfall thresholds works well in this region during the first year but may be too conservative in year 2 due to vegetation recovery and sediment depletion. However, rainfall thresholds in the second year can be improved by using updated remote sensing imagery to recalculate the debris-flow initiation likelihood with the M1 model. The current volume model overestimates for this region by a median value of 4.4 times. However, the offset between the model estimates and observations is approximately linear, and the volumes from the Grizzly Creek debris flows had a similar magnitude to historic postfire debris flows in the region. Consequently, the current volume model could be adjusted with a regional correction factor.
Publisher
Copernicus GmbH
Reference86 articles.
1. Abatzoglou, J. T., Juang, C. S., Williams, A. P., Kolden, C. A., and Westerling, A. L.: Increasing synchronous fire danger in forests of the western United States, Geophys. Res. Lett., 48, e2020GL091377, https://doi.org/10.1029/2020GL091377, 2021. 2. Adams, D. K. and Comrie, A. C.: The North American Monsoon, B. Am. Meteorol. Soc., 78, 2197–2213, https://doi.org/10.1175/1520-0477(1997)078<2197:TNAM>2.0.CO;2, 1997. 3. Alessio, P., Dunne, T., and Morell, K.: Post-wildfire Generation of Debris-flow Slurry by Rill Erosion on Colluvial Hillslopes, J. Geophys. Res.-Earth, 126, e2021JF006108, https://doi.org/10.1029/2021JF006108, 2021. 4. Allen, J. L. and Shaw, C. A.: Proterozoic geology and Phanerozoic reactivation of the newly recognized Grizzly Creek shear zone, Glenwood Canyon, Colorado, Geological Society of America, https://doi.org//10.1130/2007.fld010(03), 2008. 5. Arcement, G. J. and Schneider, V. R.: Guide for selecting Manning's roughness coefficients for natural channels and flood plains, USGS, https://doi.org/10.3133/wsp2339, 1989.
|
|