Developing a nutrient pollution model to assist policy makers by using a meso-scale Minimum Information Requirement (MIR) approach

Author:

Adams R.ORCID,Quinn P. F.,Bowes M. J.ORCID

Abstract

Abstract. A model for simulating runoff pathways and water quality fluxes has been developed using the Minimum Information (MIR) approach. The model, the Catchment Runoff Attenuation Tool (CRAFT) is applicable to meso-scale catchments which focusses primarily on hydrological pathways that mobilise nutrients. Hence CRAFT can be used investigate the impact of management intervention strategies designed to reduce the loads of nutrients into receiving watercourses. The model can help policy makers, for example in Europe, meet water quality targets and consider methods to obtain "good" ecological status. A case study of the 414 km2 Frome catchment, Dorset UK, has been described here as an application of the CRAFT model. The model was primarily calibrated on ten years of weekly data to reproduce the observed flows and nutrient (nitrate nitrogen – N – and phosphorus – P) concentrations. Also data from two years of sub-daily high resolution monitoring at the same site were also analysed. These data highlighted some additional signals in the nutrient flux, particularly of soluble reactive phosphorus, which were not observable in the weekly data. This analysis has prompted the choice of using a daily timestep for this meso-scale modelling study as the minimum information requirement. A management intervention scenario was also run to show how the model can support catchment managers to investigate how reducing the concentrations of N and P in the various flow pathways. This scale appropriate modelling tool can help policy makers consider a range of strategies to to meet the European Union (EU) water quality targets for this type of catchment.

Publisher

Copernicus GmbH

Reference46 articles.

1. Argent, R. M., Perraud, J.-M., Rahman, J. M., Grayson, R. B., and Podger, G. M.: A new approach to water quality modelling and environmental decision support systems, Environ. Modell. Softw., 24, 809–818, 2009.

2. Arnold, J. G.: SWAT (Soil and Water Assessment Tool), Grassland, Soil and Water Research Laboratory, USDA, Agricultural Research Service, Temple, TX, USA, 1994.

3. Bartley, R., Speirs, W. J., Ellis, T. W., and Waters, D. K.: A review of sediment and nutrient concentration data from Australia for use in catchment water quality models, Mar. Pollut. Bull., 65, 101–116, 2012.

4. Beven, K.: Environmental Modelling: an Uncertain Future?: An Introduction to Techniques for Uncertainty Estimation in Environmental Prediction, Routledge, Abingdon, Oxon, UK, 2009.

5. Blöschl G.: Scale and Scaling in Hydrology, Wiener Mitteilungen, Wasser-Abwasser-Gewässer, 132, TU Wien, Österreich, Vienna, Austria, 1996.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3