The Budyko and complementary relationships in an idealized model of large-scale land–atmosphere coupling

Author:

Lintner B. R.,Gentine P.,Findell K. L.ORCID,Salvucci G. D.

Abstract

Abstract. Expressions corresponding to two well-known relationships in hydrology and hydrometeorology, the Budyko and complementary relationships, are derived within an idealized prototype representing the physics of large-scale land–atmosphere coupling. These relationships are shown to hold on long (climatologic) time scales because of the tight coupling that exists between precipitation, atmospheric radiation, moisture convergence and advection. The slope of the complementary relationship is shown to be dependent the Clausius–Clapeyron relationship between saturation specific humidity and temperature, with important implications for the continental hydrologic cycle in a warming climate, e.g., one consequence of this dependence is that the complementary relationship may be expected to become more asymmetric with warming, as higher values of the slope imply a larger change in potential evaporation for a given change in evapotranspiration. In addition, the transparent physics of the prototype permits diagnosis of the sensitivity of the Budyko and complementary relationships to various atmospheric and land surface processes. Here, the impacts of anthropogenic influences, including large-scale irrigation and global warming, are assessed.

Funder

Directorate for Geosciences

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3