Monitoring hillslope moisture dynamics with surface ERT and hydrometric point measurement: a case study from Ore Mountains, Germany

Author:

Hübner R.,Heller K.,Günther T.ORCID,Kleber A.

Abstract

Abstract. Hillslopes are one of the basic units that mainly control water movement and flow pathways within catchments. The structure of their shallow subsurface affects water balance, e.g. infiltration, retention, and runoff. Nevertheless, there is still a gap of knowledge of the hydrological dynamics on hillslopes, notably due to the lack of generalization and transferability. To improve the knowledge of hydrological responses on hillslopes with periglacial cover beds, hydrometrical measurements have been carried out on a small spring catchment in the eastern Ore Mountains since November 2007. In addition, surface ERT measurements of several profiles were applied to enhance resolution of punctual hydrometric data. From May to December 2008 geoelectrical monitoring in nearly weekly intervals was implemented to trace seasonal moisture dynamics on the hillslope scale. To obtain the link between water content and resistivity, the parameters of Archie's law were determined using different core samples. To optimize inversion parameters and methods, the derived spatial and temporal water content distribution was compared to tensiometer data and resulting in remarkable coincidence. The measured resistivity shows a close correlation with precipitation. Depending on the amount and intensity of rain, different depths were affected by seepage water. Three different types of response to different amounts of precipitation (small, medium, high), could be differentiated. A period with a small amount causes a short interruption of the drying pattern at the surface in summer, whereas a medium amount induces a distinctive reaction at shallow depth (<0.9 m), and a high amount results in a strong response reaching down to 2 m.

Publisher

Copernicus GmbH

Reference75 articles.

1. AD-hoc AG-Boden: Bodenkundliche Kartieranleitung, 5th Edn., Bundesanst. für Geowiss. und Rohstoffe in Zusammenarb. mit den Staatl. Geol. Diensten, Hannover, 2005.

2. Amoozegar, A.: A compact constant-head permeameter for measuring saturated hydraulic conductivity of the Vadose Zone, Soil Sci. Soc. Am. J., 53, 1356–1361, 1989.

3. Anderson, M. G. and Burt, T. P. (Eds.): Process studies in hillslope hydrology, Wiley, Chichester, West Sussex, England, New York, 1990.

4. Apparao, A.: Geoelectric profiling, Geoexploration, 27, 351–389, 1991.

5. Archie, G.: The electrical resistivity log as an aid in determining some reservoir characteristics, T. Am. I. Min. Met. Eng., 146, 54–61, 1942.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3