Development of a zoning-based environmental-ecological-coupled model for lakes: a case study of Baiyangdian Lake in North China

Author:

Zhao Y. W.,Xu M. J.,Xu F.,Wu S. R.,Yin X. A.

Abstract

Abstract. Environmental/ecological models are widely used for lake management as they provide a means to understand physical, chemical and biological processes in highly complex ecosystems. Most research focused on the development of environmental (water quality) and ecological models, separately. Limited studies were developed to couple the two models, and in these limited coupled models a lake was regarded as a whole for analysis (i.e., considering the lake to be one well-mixed box), which was appropriate for small-scale lakes and was not sufficient to capture spatial variations within middle-scale or large-scale lakes. In response to this problem, this paper seeks to establish a zoning-based environmental-ecological-coupled model for a lake. The hierarchical cluster analysis (HCA) was adopted to determine the number of zones for a lake based on the analysis of hydrological, water quality and ecological data. MIKE21 model was used to construct two-dimensional hydrodynamics and water quality simulations. STELLA software was used to create a lake ecological model which can simulate the spatial variations of ecological condition based on flow field distribution results generated by MIKE21. The Baiyangdian Lake, the largest freshwater lake in Northern China, was adopted as the study case. The results showed that the new model was promising to predict the spatial variation trends of ecological condition in response to the changes of water quantity and water quality for lakes, and could provide a great convenience for lake management.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3