Investigation of variable threshold level approaches for hydrological drought identification

Author:

Beyene B. S.,Van Loon A. F.ORCID,Van Lanen H. A. J.ORCID,Torfs P. J. J. F.

Abstract

Abstract. Threshold level approaches are widely used to identify drought events in time series of hydrometeorological variables. However, the method used for calculating the threshold level can influence the quantification of drought events or even introduce artefact drought events. In this study, four methods of variable threshold calculation have been tested on catchment scale, namely (1) moving average of monthly quantile (M_MA), (2) moving average of daily quantile (D_MA), (3) thirty days moving window quantile (30D) and (4) fast Fourier transform of daily quantile (D_FF). The levels obtained by these methods were applied to hydrometeorological variables that were simulated with a semi-distributed conceptual rainfall-runoff model (HBV) for five European catchments with contrasting catchment properties and climate conditions. There are no physical arguments to prefer one method over the other for drought identification. The only way to investigate this is by applying the methods and visually inspecting the results. Therefore, drought statistics (i.e. number of droughts, mean duration, mean deficit) and time series plots were studied to compare drought propagation patterns determined by different threshold calculation methods. We found that all four approaches are sufficiently suitable to quantify drought propagation in contrasting catchments. Only the D_FF approach showed lower performance in two catchments. The 30D approach seems to be optimal in snow-dominated catchments, because it follows fast changes in discharge caused by snow melt more accurately. The proposed approaches can be successfully applied by water managers in regions where drought quantification and prediction are essential.

Publisher

Copernicus GmbH

Reference63 articles.

1. Allen, R. G., Pereira, L. S., Raes, D., Smith, M.: Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56, FAO, Rome, 300, 6541, 1998.

2. Bloomfield, J. P. and Marchant, B. P.: Analysis of groundwater drought building on the standardised precipitation index approach, Hydrol. Earth Syst. Sci., 17, 4769–4787, https://doi.org/10.5194/hess-17-4769-2013, 2013.

3. Corzo Perez, G. A., Van Huijgevoort, M., Voß, F., and Van Lanen, H.: On the spatio-temporal analysis of hydrological droughts from global hydrological models, Hydrol. Earth Syst. Sci., 15, 2963–2978, https://doi.org/10.5194/hess-15-2963-2011, 2011.

4. Cosgrove, C. E. and Cosgrove, W. J.: The United Nations World Water Development Report–No 4–The Dynamics of Global Water Futures: Driving Forces 2011–2050, Vol. 2, UNESCO, Paris, France, 2012.

5. Doorenbos, J. and Pruitt, W. O.: Guidelines for predicting crop water requirements, Irrigation and Drainage Paper 24, FAO, Rome, Italy, p. 197, 1975.

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3