Abstract
Abstract. Planning of drought relief and floods in developing countries is greatly hampered by lack of a sufficiently dense network of weather station measuring precipitation. In this paper we test the utility of three satellite products to augment the ground based precipitation measurement to provide improved spatial estimates of rainfall. The three products are: Tropical Rainfall Measuring Mission (TRMM) product (3B42), Multi-Sensor Precipitation Estimate-Geostationary (MPEG) and Climate Forecast System Reanalysis (CFSR). The accuracy of three products is tested in the Lake Tana Basin in Ethiopia where in 2010 38 weather stations were available with a full record of daily precipitation amounts. Daily grid satellite based rainfall estimates were compared to: (1) point observed ground rainfall (2) areal rainfall in the major river sub-basins of Lake Tana. The result shows that, the MPEG and CFSR satellite provided most accurate rainfall estimates. On the average for 38 stations 78 and 86% of the observed rainfall variation is explained by MPEG and CFSR data respectively while TRIMM explained only 17% of the variation. Similarly, the areal comparison indicated a better performance for both MPEG and CFSR data in capturing the pattern and amount of rainfall. MPEG and CFSR have also a lower RMSE compared to the TRMM satellite rainfall. The Bias indicated that, the MPEG is consistent in underestimating the observed rainfall while the TRMM and CFSR were not consistent; they overestimated for some and underestimated for the others.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献