Observability of fine-scale ocean dynamics in the northwestern Mediterranean Sea
-
Published:2017-01-13
Issue:1
Volume:13
Page:13-29
-
ISSN:1812-0792
-
Container-title:Ocean Science
-
language:en
-
Short-container-title:Ocean Sci.
Author:
Morrow Rosemary, Carret AliceORCID, Birol Florence, Nino Fernando, Valladeau Guillaume, Boy Francois, Bachelier Celine, Zakardjian Bruno
Abstract
Abstract. Technological advances in the recent satellite altimeter missions of Jason-2, SARAL/AltiKa and CryoSat-2 have improved their signal-to-noise ratio, allowing us to observe finer-scale ocean processes with along-track data. Here, we analyse the noise levels and observable ocean scales in the northwestern Mediterranean Sea, using spectral analyses of along-track sea surface height from the three missions. Jason-2 has a higher mean noise level with strong seasonal variations, with higher noise in winter due to the rougher sea state. SARAL/AltiKa has the lowest noise, again with strong seasonal variations. CryoSat-2 is in synthetic aperture radar (SAR) mode in the Mediterranean Sea but with lower-resolution ocean corrections; its statistical noise level is moderate with little seasonal variation. These noise levels impact on the ocean scales we can observe. In winter, when the mixed layers are deepest and the submesoscale is energetic, all of the altimeter missions can observe wavelengths down to 40–50 km (individual feature diameters of 20–25 km). In summer when the submesoscales are weaker, SARAL can detect ocean scales down to 35 km wavelength, whereas the higher noise from Jason-2 and CryoSat-2 blocks the observation of scales less than 50–55 km wavelength. This statistical analysis is completed by individual case studies, where filtered along-track altimeter data are compared with co-located glider and high-frequency (HF) radar data. The glider comparisons work well for larger ocean structures, but observations of the smaller, rapidly moving dynamics are difficult to co-locate in space and time (gliders cover 200 km in a few days, altimetry in 30 s). HF radar surface currents at Toulon measure the meandering Northern Current, and their good temporal sampling shows promising results in comparison to co-located SARAL altimetric currents. Techniques to separate the geostrophic component from the wind-driven ageostrophic flow need further development in this coastal band.
Publisher
Copernicus GmbH
Subject
Cell Biology,Developmental Biology,Embryology,Anatomy
Reference34 articles.
1. Adloff, A., Somot, S., Sevault, F., Jorda, G., Aznar, R., Déqué, M., Herrmann, M., Marcos, M., Dubois, C., Padorno, E., Alvarez-Fanjul, E., and Gomis, D.: Mediterranean Sea response to climate change in an ensemble of 21st century scenarios, Clim. Dynam., 45, 2775, https://doi.org/10.1007/s00382-015-2507-3, 2015. 2. Birol, F. and Delebecque, C.: Using High Sampling Rate (10/20 Hz) Altimeter Data for the Observation of Coastal Surface Currents: A Case Study over the Northwestern Mediterranean Sea, J. Marine Syst., 129, 318–333, https://doi.org/10.1016/j.jmarsys.2013.07.009, 2014. 3. Birol, F. and Niño, F.: Ku and Ka-Band Altimeter Data in the Northwestern Mediterranean Sea, Mar. Geod., 38, 313–327, https://doi.org/10.1080/01490419.2015.1034814, 2015. 4. Birol, F., Cancet, M., and Estournel, C.: Aspects of the seasonal variability of the Northern Current (NW Mediterranean Sea) observed by altimetry, J. Marine Syst., 81, 297–311, 2010. 5. Bosse, A., Testor, P., Mortier, L., Prieur, L., Taillandier, V., D'Ortenzio, F., and Coppola, L.: Spreading of Levantine Intermediate Waters by submesoscale coherent vortices in the northwestern Mediterranean Sea as observed with gliders, J. Geophys. Res.-Oceans, 120, 1599–1622, https://doi.org/10.1002/2014JC010263, 2015.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|