Atmospheric histories and emissions of chlorofluorocarbons CFC-13 (CClF<sub>3</sub>), ΣCFC-114 (C<sub>2</sub>Cl<sub>2</sub>F<sub>4</sub>), and CFC-115 (C<sub>2</sub>ClF<sub>5</sub>)
-
Published:2018-01-25
Issue:2
Volume:18
Page:979-1002
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Vollmer Martin K.ORCID, Young DickonORCID, Trudinger Cathy M.ORCID, Mühle JensORCID, Henne StephanORCID, Rigby MatthewORCID, Park Sunyoung, Li Shanlan, Guillevic MyriamORCID, Mitrevski Blagoj, Harth Christina M., Miller Benjamin R., Reimann StefanORCID, Yao Bo, Steele L. Paul, Wyss Simon A., Lunder Chris R., Arduini JgorORCID, McCulloch Archie, Wu Songhao, Rhee Tae Siek, Wang Ray H. J.ORCID, Salameh Peter K., Hermansen OveORCID, Hill Matthias, Langenfelds Ray L., Ivy Diane, O'Doherty SimonORCID, Krummel Paul B.ORCID, Maione MichelaORCID, Etheridge David M.ORCID, Zhou Lingxi, Fraser Paul J., Prinn Ronald G., Weiss Ray F.ORCID, Simmonds Peter G.
Abstract
Abstract. Based on observations of the chlorofluorocarbons CFC-13 (chlorotrifluoromethane), ΣCFC-114 (combined measurement of both isomers of dichlorotetrafluoroethane), and CFC-115 (chloropentafluoroethane) in atmospheric and firn samples, we reconstruct records of their tropospheric histories spanning nearly 8 decades. These compounds were measured in polar firn air samples, in ambient air archived in canisters, and in situ at the AGAGE (Advanced Global Atmospheric Gases Experiment) network and affiliated sites. Global emissions to the atmosphere are derived from these observations using an inversion based on a 12-box atmospheric transport model. For CFC-13, we provide the first comprehensive global analysis. This compound increased monotonically from its first appearance in the atmosphere in the late 1950s to a mean global abundance of 3.18 ppt (dry-air mole fraction in parts per trillion, pmol mol−1) in 2016. Its growth rate has decreased since the mid-1980s but has remained at a surprisingly high mean level of 0.02 ppt yr−1 since 2000, resulting in a continuing growth of CFC-13 in the atmosphere. ΣCFC-114 increased from its appearance in the 1950s to a maximum of 16.6 ppt in the early 2000s and has since slightly declined to 16.3 ppt in 2016. CFC-115 increased monotonically from its first appearance in the 1960s and reached a global mean mole fraction of 8.49 ppt in 2016. Growth rates of all three compounds over the past years are significantly larger than would be expected from zero emissions. Under the assumption of unchanging lifetimes and atmospheric transport patterns, we derive global emissions from our measurements, which have remained unexpectedly high in recent years: mean yearly emissions for the last decade (2007–2016) of CFC-13 are at 0.48 ± 0.15 kt yr−1 (> 15 % of past peak emissions), of ΣCFC-114 at 1.90 ± 0.84 kt yr−1 (∼ 10 % of peak emissions), and of CFC-115 at 0.80 ± 0.50 kt yr−1 (> 5 % of peak emissions). Mean yearly emissions of CFC-115 for 2015–2016 are 1.14 ± 0.50 kt yr−1 and have doubled compared to the 2007–2010 minimum. We find CFC-13 emissions from aluminum smelters but if extrapolated to global emissions, they cannot account for the lingering global emissions determined from the atmospheric observations. We find impurities of CFC-115 in the refrigerant HFC-125 (CHF2CF3) but if extrapolated to global emissions, they can neither account for the lingering global CFC-115 emissions determined from the atmospheric observations nor for their recent increases. We also conduct regional inversions for the years 2012–2016 for the northeastern Asian area using observations from the Korean AGAGE site at Gosan and find significant emissions for ΣCFC-114 and CFC-115, suggesting that a large fraction of their global emissions currently occur in northeastern Asia and more specifically on the Chinese mainland.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference97 articles.
1. Azzali, D. and Basile, G.: Purification process of pentafluoroethane (HFC-125), EP Patent 1 153 907, available at: https://www.google.com/patents/EP1153907B1?cl=un (last access: 6 December 2017), 2004. 2. Baasandorj, M., Feierabend, K. J., and Burkholder, J. B.: Rate coefficients and ClO radical yields in the reaction of O(1D) with CClF2CCl2F, CCl3CF3, CClF2CClF2, and CCl2FCF3, Int. J. Chem. Kinet., 43, 393–401, https://doi.org/10.1002/kin.20561, 2011. 3. Baasandorj, M., Fleming, E. L., Jackman, C. H., and Burkholder, J. B.: O(1D) kinetic study of key ozone depleting substances and greenhouse gases, J. Phys. Chem. A, 117, 2434–2445, https://doi.org/10.1021/jp312781c, 2013. 4. Banks, R. E. and Sharratt, P. N.: Environmental Impacts of the Manufacture of HFC-134a, Tech. rep., Department of Chemistry and Department of Chemical Engineering, UMIST, Manchester, 1996. 5. Brandstater, S. M., Cohn, M., Hedrick, V. E., and Iikubo, Y.: Processes for purification and production of fluorocarbons, US Patent App. 10/075 560, available at: https://www.google.ch/patents/US20030164283 (last access: 6 December 2017), 2003.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|