Consistent satellite XCO<sub>2</sub> retrievals from SCIAMACHY and GOSAT using the BESD algorithm

Author:

Heymann J.,Reuter M.ORCID,Hilker M.,Buchwitz M.ORCID,Schneising O.ORCID,Bovensmann H.ORCID,Burrows J. P.ORCID,Kuze A.ORCID,Suto H.,Deutscher N. M.,Dubey M. K.ORCID,Griffith D. W. T.ORCID,Hase F.,Kawakami S.,Kivi R.ORCID,Morino I.ORCID,Petri C.ORCID,Roehl C.,Schneider M.ORCID,Sherlock V.,Sussmann R.,Velazco V. A.ORCID,Warneke T.,Wunch D.ORCID

Abstract

Abstract. Consistent and accurate long-term data sets of global atmospheric concentrations of carbon dioxide (CO2) are required for carbon cycle and climate-related research. However, global data sets based on satellite observations may suffer from inconsistencies originating from the use of products derived from different satellites as needed to cover a long enough time period. One reason for inconsistencies can be the use of different retrieval algorithms. We address this potential issue by applying the same algorithm, the Bremen Optimal Estimation DOAS (BESD) algorithm, to different satellite instruments, SCIAMACHY on-board ENVISAT (March 2002–April 2012) and TANSO-FTS on-board GOSAT (launched in January 2009), to retrieve XCO2, the column-averaged dry-air mole fraction of CO2. BESD has been initially developed for SCIAMACHY XCO2 retrievals. Here, we present the first detailed assessment of the new GOSAT BESD XCO2 product. GOSAT BESD XCO2 is a product generated and delivered to the MACC project for assimilation into ECMWF's Integrated Forecasting System. We describe the modifications of the BESD algorithm needed in order to retrieve XCO2 from GOSAT and present detailed comparisons with ground-based observations of XCO2 from the Total Carbon Column Observing Network (TCCON). We discuss detailed comparison results between all three XCO2 data sets (SCIAMACHY, GOSAT and TCCON). The comparison results demonstrate the good consistency between SCIAMACHY and GOSAT XCO2. For example, we found a mean difference for daily averages of −0.60 ± 1.56 ppm (mean difference ± standard deviation) for GOSAT–SCIAMACHY (linear correlation coefficient r=0.82), −0.34 ± 1.37 ppm (r = 0.86) for GOSAT–TCCON and 0.10 ± 1.79 ppm (r = 0.75) for SCIAMACHY–TCCON. The remaining differences between GOSAT and SCIAMACHY are likely due to non-perfect collocation (± 2 h, 10° x 10° around TCCON sites), i.e. the observed air masses are not exactly identical but likely also due to a still non-perfect BESD retrieval algorithm, which will be continuously improved in the future. Our overarching goal is to generate a satellite-derived XCO2 data set appropriate for climate and carbon cycle research covering the longest possible time period. We therefore also plan to extend the existing SCIAMACHY and GOSAT data set discussed here by also using data from other missions (e.g. OCO-2, GOSAT-2, CarbonSat) in the future.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3