SnowPappus v1.0, a blowing-snow model for large-scale applications of Crocus snow scheme

Author:

Baron MatthieuORCID,Haddjeri Ange,Lafaysse Matthieu,Le Toumelin LouisORCID,Vionnet VincentORCID,Fructus Mathieu

Abstract

Abstract. Wind-induced snow transport has a strong influence on snow spatial variability especially at spatial scales between 1 and 500 m in alpine environments. Thus, the evolution of snow modelling systems towards 100–500 m resolutions requires representing this process. We developed SnowPappus, a parsimonious blowing snow model coupled to the Crocus state-of-the-art snow model, able to be operated over large domains and entire snow seasons. SnowPappus simulates blowing snow occurrence, horizontal transport flux and sublimation rate on each grid cell as a function of 2D atmospheric forcing and snow surface properties. Then, it computes a mass balance using an upwind scheme to provide eroded or accumulated snow amounts to Crocus. Parameterizations used to represent the different processes are described in detail and discussed against existing literature. A point-scale evaluation of blowing snow fluxes was conducted, mainly at the Col du Lac Blanc observatory in French Alps. Blowing snow occurrence evaluation showed SnowPappus performs as well as a currently operational scheme. Evaluation of the simulated suspension fluxes highlighted a strong sensitivity to the suspended particles terminal fall speed. Proper calibrations allows the model to reproduce the correct order of magnitude of the mass flux in the suspension layer. Numerical performances of gridded simulations of Crocus coupled with SnowPappus were assessed, showing the feasibility of using it for operational snow forecast at the scale of the entire French Alps.

Funder

Région Auvergne-Rhône-Alpes

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3