Soil properties and not inputs control carbon, nitrogen, phosphorus ratios in cropped soils in the long-term
Author:
Frossard E.,Buchmann N.,Bünemann E. K.,Kiba D. I.,Lompo F.,Oberson A.,Tamburini F.,Traoré O. Y. A.
Abstract
Abstract. Stoichiometric approaches have been applied to understand the relationship between soil organic matter dynamics and biological nutrient transformations. However, very few studies explicitly considered the effects of agricultural management practices on soil C : N : P ratio. The aim of this study was to assess how different input types and rates would affect the C : N : P molar ratios of bulk soil, organic matter and microbial biomass in cropped soils in the long-term. Thus, we analysed the C, N and P inputs and budgets as well as soil properties in three long-term experiments established on different soil types: the Saria soil fertility trial (Burkina Faso), the Wagga Wagga rotation/stubble management/soil preparation trial (Australia), and the DOK cropping system trial (Switzerland). In each of these trials, there was a large range of C, N and P inputs which had a strong impact on element concentrations in soils. However, although C : N : P ratios of the inputs were highly variable, they had only weak effects on soil C : N : P ratios. At Saria, a positive correlation was found between the N : P ratio of inputs and microbial biomass, while no relation was observed between the nutrient ratios of inputs and soil organic matter. At Wagga Wagga, the C : P ratio of inputs was significantly correlated to total soil C : P, N : P and C : N ratios, but had no impact on the elemental composition of microbial biomass. In the DOK trial, a positive correlation was found between the C budget and the C to organic P ratio in soils, while the nutrient ratios of inputs were not related to those in the microbial biomass. We argue that these responses are due to differences in soil properties among sites. At Saria, the soil is dominated by quartz and some kaolinite, has a coarse texture, a fragile structure and a low nutrient content. Thus, microorganisms feed on inputs (plant residues, manure). In contrast, the soil at Wagga Wagga contains illite and haematite, is richer in clay and nutrients and has a stable structure. Thus, organic matter is protected from mineralization and can therefore accumulate, allowing microorganisms to feed on soil nutrients and to keep a constant C : N : P ratio. The DOK soil represents an intermediate situation, with high nutrient concentrations, but a rather fragile soil structure, where organic matter does not accumulate. We conclude that the study of C, N, and P ratios is important to understand the functioning of cropped soils in the long-term, but that it must be coupled with a precise assessment of element inputs and budgets in the system and a good understanding of the ability of soils to stabilize C, N and P compounds.
Publisher
Copernicus GmbH
Reference91 articles.
1. Ågren, G. I.: Stoichiometry and nutrition of plant growth in natural communities, Ann. Rev. Ecol. Evol. Syst., 39, 153–170, 2008. 2. Bellenger, J.-P.,Wichard, T., Xu, Y., and Kraepiel, A. M. L.: Essential metals for nitrogen fixation in a free-living N2-fixing bacterium: chelation, homeostasis and high use efficiency, Environ. Microbiol., 13, 1395–1411, 2011. 3. Bonzi, M.: Evaluation et déterminisme du bilan de l'azote en sols cultivés du centre Burkina Faso: Etude par traçage isotopique 15N au cours d'essais en station et en milieu paysan, Thèse de Doctorat Unique en Sciences Agronomique, INPL/ENSAIA, Nancy, France, 2002. 4. Bosshard, C.: Nitrogen dynamics in organic and conventional cropping systems. PhD dissertation, ETH No. 17329, Swiss Federal Institute of Technology ETH, Zurich, Switzerland, 2007. 5. Bosshard, C., Frossard, E., Dubois, D., Mäder, P., Manolov, I., and Oberson, A.: Incorporation of 15N-labeled amendments into physically separated soil organic matter fractions, Soil Sci. Soc. Am. J., 72, 949–959, 2008.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|