Reply to Nicholson's comment on "Consistent calculation of aquatic gross production from oxygen triple isotope measurements" by Kaiser (2011)

Author:

Kaiser J.,Abe O.

Abstract

Abstract. The comment by Nicholson (2011a) questions the "consistency" of the "definition" of the "biological end-member" used by Kaiser (2011a) in the calculation of oxygen gross production. "Biological end-member" refers to the relative oxygen isotope ratio difference between photosynthetic oxygen and Air-O2 (abbreviated 17δP and 18δP for 17O/16O and 18O/16O, respectively). The comment claims that this leads to an overestimate of the discrepancy between previous studies and that the resulting gross production rates are "30% too high". Nicholson recognises the improved accuracy of Kaiser's direct calculation ("dual-delta") method compared to previous approximate approaches based on 17O excess (17Δ) and its simplicity compared to previous iterative calculation methods. Although he correctly points out that differences in the normalised gross production rate (g) are largely due to different input parameters used in Kaiser's "base case" and previous studies, he does not acknowledge Kaiser's observation that iterative and dual-delta calculation methods give exactly the same g for the same input parameters (disregarding kinetic isotope fractionation during air-sea exchange). The comment is based on misunderstandings with respect to the "base case" 17δP and 18δP values. Since direct measurements of 17δP and 18δPdo not exist or have been lost, Kaiser constructed the "base case" in a way that was consistent and compatible with literature data. Nicholson showed that an alternative reconstruction of 17δP gives g values closer to previous studies. However, unlike Nicholson, we refrain from interpreting either reconstruction as a benchmark for the accuracy of g. A number of publications over the last 12 months have tried to establish which of these two reconstructions is more accurate. Nicholson draws on recently revised measurements of the relative 17O/16O difference between VSMOW and Air-O2 (17δVSMOW; Barkan and Luz, 2011), together with new measurements of photosynthetic isotope fractionation, to support his comment. However, our own measurements disagree with these revised 17δVSMOW values. If scaled for differences in 18δVSMOW, they are actually in good agreement with the original data (Barkan and Luz, 2005) and support Kaiser's "base case" g values. The statement that Kaiser's g values are "30% too high" can therefore not be accepted, pending future work to reconcile different 17δVSMOW measurements. Nicholson also suggests that approximated calculations of gross production should be performed with a triple isotope excess defined as 17Δ#≡ ln (1+17δ)–λ ln(1+18δ), with λ = θR = ln(1+17ϵR ) / ln(1+18ϵR). However, this only improves the approximation for certain 17δP and 18δP values, for certain net to gross production ratios (f) and for certain ratios of gross production to gross Air-O2 invasion (g). In other cases, the approximated calculation based on 17Δ† ≡17δ – κ 18δ with κ = γR = 17ϵR/18ϵR (Kaiser, 2011a) gives more accurate results.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference30 articles.

1. Barkan, E. and Luz, B.: High precision measurements of 17O $/$ 16O and 18O $/$ 16O ratios in H2O, Rapid Commun. Mass Spectrom., 19, 3737–3742, 2005.

2. Barkan, E. and Luz, B.: The relationships among the three stable isotopes of oxygen in air, seawater and marine photosynthesis, Rapid Commun. Mass Spectrom., 25, 2367–2369, doi10.1002/rcm.5125, 2011.

3. Coplen, T. B., Hopple, J. A., Böhlke, J. K., Peiser, H. S., Rieder, S. E., Krouse, H. R., Rosman, K. J. R., Ding, T., Vocke, J., R. D., Révész, K. M., Lamberty, A., Taylor, P., and De Bièvre, P.: Compilation of minimum and maximum isotope ratios of selected elements in naturally occurring materials and reagents, US Geological Survey Water-Resources Investigations Report 01-4222, Reston, Virginia, 98 pp., 2002.

4. Eisenstadt, D., Barkan, E., Luz, B., and Kaplan, A.: Enrichment of oxygen heavy isotopes during photosynthesis in phytoplankton, Photosynth. Res., 103, 97–103, https://doi.org/10.1007/s11120-009-9518-z, 2010.

5. Gonfiantini, R.: Consultants' Group Meeting on stable isotope standards and intercalibration in hydrology and in geochemistry, IAEA, Vienna, 10 pp., 1977.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3