Dynamically weighted ensemble of geoscientific models via automated machine-learning-based classification

Author:

Chen HaoORCID,Wang Tiejun,Zhang YonggenORCID,Bai Yun,Chen Xi

Abstract

Abstract. Despite recent developments in geoscientific (e.g., physics- or data-driven) models, effectively assembling multiple models for approaching a benchmark solution remains challenging in many sub-disciplines of geoscientific fields. Here, we proposed an automated machine-learning-assisted ensemble framework (AutoML-Ens) that attempts to resolve this challenge. Details of the methodology and workflow of AutoML-Ens were provided, and a prototype model was realized with the key strategy of mapping between the probabilities derived from the machine learning classifier and the dynamic weights assigned to the candidate ensemble members. Based on the newly proposed framework, its applications for two real-world examples (i.e., mapping global soil water retention parameters and estimating remotely sensed cropland evapotranspiration) were investigated and discussed. Results showed that compared to conventional ensemble approaches, AutoML-Ens was superior across the datasets (the training, testing, and overall datasets) and environmental gradients with improved performance metrics (e.g., coefficient of determination, Kling–Gupta efficiency, and root-mean-squared error). The better performance suggested the great potential of AutoML-Ens for improving quantification and reducing uncertainty in estimates due to its two unique features, i.e., assigning dynamic weights for candidate models and taking full advantage of AutoML-assisted workflow. In addition to the representative results, we also discussed the interpretational aspects of the used framework and its possible extensions. More importantly, we emphasized the benefits of combining data-driven approaches with physics constraints for geoscientific model ensemble problems with high dimensionality in space and nonlinear behaviors in nature.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

State Key Laboratory of Remote Sensing Science

Publisher

Copernicus GmbH

Subject

General Medicine

Reference67 articles.

1. Abbott, B. W., Bishop, K., Zarnetske, J. P., Minaudo, C., Chapin, F. S., Krause, S., Hannah, D. M., Conner, L., Ellison, D., Godsey, S. E., Plont, S., Marçais, J., Kolbe, T., Huebner, A., Frei, R. J., Hampton, T., Gu, S., Buhman, M., Sara Sayedi, S., Ursache, O., Chapin, M., Henderson, K. D., and Pinay, G.: Human domination of the global water cycle absent from depictions and perceptions, Nat. Geosci., 12, 533–540, https://doi.org/10.1038/s41561-019-0374-y, 2019.

2. Abramowitz, G., Herger, N., Gutmann, E., Hammerling, D., Knutti, R., Leduc, M., Lorenz, R., Pincus, R., and Schmidt, G. A.: ESD Reviews: Model dependence in multi-model climate ensembles: weighting, sub-selection and out-of-sample testing, Earth Syst. Dynam., 10, 91–105, https://doi.org/10.5194/esd-10-91-2019, 2019.

3. Araújo, M. B. and New, M.: Ensemble forecasting of species distributions, Trends Ecol. Evol., 22, 42–47, https://doi.org/10.1016/j.tree.2006.09.010, 2007.

4. Bai, Y., Zhang, J., Zhang, S., Yao, F., and Magliulo, V.: A remote sensing-based two-leaf canopy conductance model: Global optimization and applications in modeling gross primary productivity and evapotranspiration of crops, Remote Sens. Environ., 215, 411–437, https://doi.org/10.1016/j.rse.2018.06.005, 2018.

5. Bai, Y., Zhang, S., Bhattarai, N., Mallick, K., Liu, Q., Tang, L., Im, J., Guo, L., and Zhang, J.: On the use of machine learning based ensemble approaches to improve evapotranspiration estimates from croplands across a wide environmental gradient, Agr. Forest Meteorol., 298–299, 108308, https://doi.org/10.1016/j.agrformet.2020.108308, 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3