Integrated water vapor and liquid water path retrieval using a single-channel radiometer

Author:

Billault-Roux Anne-Claire,Berne Alexis

Abstract

Abstract. Microwave radiometers are widely used for the retrieval of Liquid Water Path (LWP) and Integrated Water Vapor (IWV) in the context of cloud and precipitation studies. This paper presents a new site-independent retrieval algorithm for LWP and IWV, relying on a single-frequency 89-GHz ground-based radiometer. A statistical approach is used, based on a neural network, which is trained and tested on a synthetic data set constructed from radiosonde profiles worldwide. In addition to 89-GHz brightness temperature, the input features include surface measurements of temperature, pressure and humidity, as well as geographical information and, when available, estimates of IWV and LWP from reanalysis data. An analysis of the algorithm is presented to assess its accuracy, the impact of the various input features, as well as its sensitivity to radiometer calibration and its stability across geographical locations. The new method is then implemented on real data that were collected during a field deployment in Switzerland and during the ICE-POP 2018 campaign in South Korea. The new algorithm is shown to be quite robust, especially in mid-latitude environments with a moderately moist climate, although its accuracy is inevitably lower than that obtained with state-of-the-art multi-channel radiometers.

Funder

European Commission

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3