Abstract
Abstract. Tailings ponds in the Alberta Oil Sands Region are significant sources of fugitive emissions of methane to the atmosphere, but detailed knowledge on spatial and temporal variabilities is lacking due to limitations of the methods deployed under current regulatory compliance monitoring programs. To develop more robust and representative methods for quantifying these emissions, three micrometeorological flux methods were applied along with traditional flux chambers to determine fluxes over a 5-week period. Eddy covariance flux measurements provided the benchmark. A method is presented to directly calculate stability-corrected eddy diffusivities that can be applied to vertical gas profiles for gradient flux estimation. Gradient fluxes were shown to agree with eddy covariance within 7 %, and inverse dispersion model fluxes within 11 %, with an overall uncertainty of 28 % for the calculated mean flux. Fluxes were shown to have only a minor diurnal cycle (18 % variability) and to be mostly independent of wind speed, air and water surface temperatures. Flux chambers underestimated the fluxes by a factor of 2 in this particular campaign. These measurements indicate that the larger footprint of micrometeorological measurements results in more robust emission estimates representing the whole pond.
Funder
Natural Resources Canada
Environment and Climate Change Canada
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献