Best practices for precipitation sample storage for offline studies of ice nucleation

Author:

Beall Charlotte M.ORCID,Lucero DolanORCID,Hill Thomas C.ORCID,DeMott Paul J.ORCID,Stokes M. Dale,Prather Kimberly A.ORCID

Abstract

Abstract. Ice nucleating particles (INPs) are efficiently removed from clouds through precipitation, a convenience of nature for the study of these very rare particles that influence multiple climate-relevant cloud properties including ice crystal concentrations, size distributions, and phase-partitioning processes. INPs suspended in precipitation can be used to estimate in-cloud INP concentrations and to infer their original composition. Offline droplet assays are commonly used to measure INP concentrations in precipitation samples. Heat and filtration treatments are also used to probe INP composition and size ranges. Many previous studies report storing samples prior to INP analyses, but little is known about the effects of storage on INP concentration or their sensitivity to treatments. Here, through a study of 15 precipitation samples collected at a coastal location in La Jolla, CA, USA, we found significant changes caused by storage to concentrations of INPs with warm to moderate freezing temperatures (−7 to −19 ºC). We compared four conditions: 1.) storage at room temperature (+21–23 ºC), 2.) storage at +4 ºC 3.) storage at −20 ºC, and 4.) flash freezing samples with liquid nitrogen prior to storage at −20 ºC. Results demonstrate that storage can lead to both enhancements and losses of greater than one order of magnitude, with non-heat-labile INPs being generally less sensitive to storage regime, but significant losses of INPs smaller than 0.45 μm in all tested storage protocols. No correlation was found between total storage time (1–166 days) and changes in INP concentration. We provide the following recommendations for preservation of precipitation samples from coastal environments intended for INP analysis: that samples be stored at −20 ºC to minimize storage artifacts, that changes due to storage are likely and an additional uncertainty in INP concentrations, and that filtration treatments be applied only to fresh samples. Average INP losses of 72 %, 42 %, 25 % and 32 % were observed for untreated samples stored using the room temperature, +4 ºC, −20 ºC, and flash frozen protocols, respectively. Finally, correction factors are provided so that INP measurements obtained from stored samples may be used to estimate concentrations in fresh samples.

Funder

National Science Foundation

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3