Capturing interactions between nitrogen and hydrological cycles under historical climate and land use: Susquehanna watershed analysis with the GFDL Land Model LM3-TAN
Author:
Lee M., Malyshev S.ORCID, Shevliakova E., Jaffé P. R.
Abstract
Abstract. We developed a~process model LM3-TAN to assess the combined effects of direct human influences and climate change on Terrestrial and Aquatic Nitrogen (TAN) cycling. The model was developed by expanding NOAA's Geophysical Fluid Dynamics Laboratory land model LM3V-N of coupled terrestrial carbon and nitrogen (C-N) cycling and including new N cycling processes and inputs such as a~soil denitrification, point N sources to streams (i.e. sewage), and stream transport and microbial processes. Because the model integrates ecological, hydrological, and biogeochemical processes, it captures key controls of transport and fate of N in the vegetation-soil-river system in a comprehensive and consistent framework which is responsive to climatic variations and land use changes. We applied the model at 1/8° resolution for a study of the Susquehanna River basin. We simulated with LM3-TAN stream dissolved organic-N, ammonium-N, and nitrate-N loads throughout the river network, and we evaluated the modeled loads for 1986–2005 using data from 15 monitoring stations as well as a reported budget for the entire basin. By accounting for inter-annual hydrologic variability, the model was able to capture inter-annual variations of stream N loadings. While the model was calibrated with the stream N loads only at the last downstream station Marietta (40.02° N, 76.32° W), it captured the N loads well at multiple locations within the basin with different climate regimes, land use types, and associated N sources and transformations in the sub-basins. Furthermore, the calculated and previously reported N budgets agreed well at the level of the whole Susquehanna watershed. Here we illustrate how point and non-point N sources contribute to the various ecosystems are stored, lost, and exported via the river. Local analysis for 6 sub-basins showed combined effects of land use and climate on the soil denitrification rates, with the highest rates in the Lower Susquehanna sub-basin (extensive agriculture; Atlantic coastal climate) and the lowest rates in the West Branch Susquehanna sub-basin (mostly forest; Great Lakes and Midwest climate). In the re-growing secondary forests, most of the N from non-point sources was stored in the vegetation and soil, but in the agricultural lands most N inputs were removed by soil denitrification indicating that anthropogenic N applications could drive substantial increase of N2O emission, an intermediate of the denitrification process.
Publisher
Copernicus GmbH
Reference58 articles.
1. Albritton, D. L., Derwent, R. G., Isaksen, I. S. A., Lal, M., and Wuebles, D. J.: Trace gas radiative forcing indices, in: Climate Change 1994: Radiative Forcing of Climate Change and an Evaluation of the IPCC IS92 Emission Scenarios, edited by: Houghton, J. T., Cambridge University Press, Cambridge, UK, 205–231, 1995. 2. Alexander, R. B., Bohlke, J. K., Boyer, E. W., David, M. B., Harvey, J. W., Mulholland, P. J., Seitzinger, S. P., Tobias, C. R., Tonitto, C., and Wollheim, W. M.: Dynamic modeling of nitrogen losses in river networks unravels the coupled effects of hydrological and biogeochemical processes, Biogeochemistry, 93, 91–116, 2009. 3. Bachman, L. J., Lindsey, B. D., Brakebill, J. W., and Powars, D. S.: Ground-water discharge and base-flow nitrate loads of non tidal streams, and their relation to a hydrogeomorphic classification of the Chesapeake Bay watershed, US Geological Survey Water-Resources Investigations Rep. 98–4059, 71 pp., 1998. 4. Band, L. E., Tague, C. L., Groffman, P., and Belt, K.: Forest ecosystem processes at the watershed Scale: hydrological and ecological controls of nitrogen export, Hydrol. Process., 15, 2013–2028, 2001. 5. Beckers, J., Smerdon, B., and Wilson, M.: Review of hydrologic models for forest management and Climate change applications in British Columbia and Alberta, FORREX SERIES 25, FORREX Forum for Research and Extension in Natural Resources Society, Kamloops, B. C., 2009.
|
|