Causes of variation in soil carbon simulations from CMIP5 Earth system models and comparison with observations

Author:

Todd-Brown K. E. O.ORCID,Randerson J. T.,Post W. M.,Hoffman F. M.ORCID,Tarnocai C.,Schuur E. A. G.,Allison S. D.ORCID

Abstract

Abstract. Stocks of soil organic carbon represent a large component of the carbon cycle that may participate in climate change feedbacks, particularly on decadal and centennial timescales. For Earth system models (ESMs), the ability to accurately represent the global distribution of existing soil carbon stocks is a prerequisite for accurately predicting future carbon–climate feedbacks. We compared soil carbon simulations from 11 model centers to empirical data from the Harmonized World Soil Database (HWSD) and the Northern Circumpolar Soil Carbon Database (NCSCD). Model estimates of global soil carbon stocks ranged from 510 to 3040 Pg C, compared to an estimate of 1260 Pg C (with a 95% confidence interval of 890–1660 Pg C) from the HWSD. Model simulations for the high northern latitudes fell between 60 and 820 Pg C, compared to 500 Pg C (with a 95% confidence interval of 380–620 Pg C) for the NCSCD and 290 Pg C for the HWSD. Global soil carbon varied 5.9 fold across models in response to a 2.6-fold variation in global net primary productivity (NPP) and a 3.6-fold variation in global soil carbon turnover times. Model–data agreement was moderate at the biome level (R2 values ranged from 0.38 to 0.97 with a mean of 0.75); however, the spatial distribution of soil carbon simulated by the ESMs at the 1° scale was not well correlated with the HWSD (Pearson correlation coefficients less than 0.4 and root mean square errors from 9.4 to 20.8 kg C m−2). In northern latitudes where the two data sets overlapped, agreement between the HWSD and the NCSCD was poor (Pearson correlation coefficient 0.33), indicating uncertainty in empirical estimates of soil carbon. We found that a reduced complexity model dependent on NPP and soil temperature explained much of the 1° spatial variation in soil carbon within most ESMs (R2 values between 0.62 and 0.93 for 9 of 11 model centers). However, the same reduced complexity model only explained 10% of the spatial variation in HWSD soil carbon when driven by observations of NPP and temperature, implying that other drivers or processes may be more important in explaining observed soil carbon distributions. The reduced complexity model also showed that differences in simulated soil carbon across ESMs were driven by differences in simulated NPP and the parameterization of soil heterotrophic respiration (inter-model R2 = 0.93), not by structural differences between the models. Overall, our results suggest that despite fair global-scale agreement with observational data and moderate agreement at the biome scale, most ESMs cannot reproduce grid-scale variation in soil carbon and may be missing key processes. Future work should focus on improving the simulation of driving variables for soil carbon stocks and modifying model structures to include additional processes.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 611 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3