Effects of anthropogenic land-subsidence on inundation dynamics: the case study of Ravenna, Italy

Author:

Carisi FrancescaORCID,Domeneghetti AlessioORCID,Castellarin AttilioORCID

Abstract

Abstract. Can differential land-subsidence significantly alter river flooding dynamics, and thus flood risk in flood prone areas? Many studies show how the lowering of the coastal areas is closely related to an increase in the flood-hazard due to more important tidal flooding and see level rise. The literature on the relationship between differential land-subsidence and possible alterations to riverine flood-hazard of inland areas is still sparse, although several geographical areas characterized by significant land-subsidence rates during the last 50 years experienced intensification in both inundation magnitude and frequency. We investigate the possible impact of a significant differential ground lowering on flood hazard over a 77 km2 area around the city of Ravenna, in Italy. The rate of land-subsidence in the study area, naturally in the order of a few mm year−1, dramatically increased up to 110 mm year−1 after World War II, primarily due to groundwater pumping and gas production platforms. The result was a cumulative drop that locally exceeds 1.5 m. Using a recent digital elevation model (res. 5 m) and literature data on land-subsidence, we constructed a ground elevation model over the study area in 1897 and we characterized either the current and the historical DEM with or without road embankments and land-reclamation channels in their current configuration. We then considered these four different topographic models and a two-dimensional hydrodynamic model to simulate and compare the inundation dynamics associated with a levee failure scenario along embankment system of the river Montone, which flows eastward in the southern portion of the study area. For each topographic model, we quantified the flood hazard in terms of maximum water depth (h) and we compared the actual effects on flood-hazard dynamics of differential land-subsidence relative to those associated with other man-made topographic alterations, which resulted to be much more significant.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3