Development of an integrated model for the Campaspe catchment: a tool to help improve understanding of the interaction between society, policy, farming decision, ecology, hydrology and climate

Author:

Iwanaga TakuyaORCID,Zare Fateme,Croke BarryORCID,Fu BaihuaORCID,Merritt Wendy,Partington Daniel,Ticehurst Jenifer,Jakeman Anthony

Abstract

Abstract. Management of water resources requires understanding of the hydrology and hydrogeology, as well as the policy and human drivers and their impacts. This understanding requires relevant inputs from a wide range of disciplines, which will vary depending on the specific case study. One approach to gain understanding of the impact of climate and society on water resources is through the use of an integrated modelling process that engages stakeholders and experts in specifics of problem framing, co-design of the underpinning conceptual model, and discussion of the ensuing results. In this study, we have developed such an integrated modelling process for the Campaspe basin in northern Victoria, Australia. The numerical model built has a number of components: Node/link based surface water hydrology module based on the IHACRES rainfall-streamflow model Distributed groundwater model for the lower catchment (MODFLOW) Farm decision optimisation module (to determine irrigation requirements) Policy module (setting conditions on availability of water based on existing rules) Ecology module (determining the impacts of available streamflow on platypus, fish and river red gum trees) The integrated model is component based and has been developed in Python, with the MODFLOW and surface water hydrology model run in external programs, controlled by the master program (in Python). The integrated model has been calibrated using historical data, with the intention of exploring the impact of various scenarios (future climate scenarios, different policy options, water management options) on the water resources. The scenarios were selected based on workshops with, and a social survey of, stakeholders in the basin regarding what would be socially acceptable and physically plausible options for changes in management. An example of such a change is the introduction of a managed aquifer recharge system to capture dam overflows, and store at least a portion of this in the aquifer, thereby increasing the groundwater resource as well as reducing the impact of existing pumping levels.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3