WRF-Chem simulations of a typical pre-monsoon dust storm in northern India: influences on aerosol optical properties and radiation budget

Author:

Kumar R.ORCID,Barth M. C.,Pfister G. G.ORCID,Naja M.ORCID,Brasseur G. P.

Abstract

Abstract. The impact of a typical pre-monsoon season (April–June) dust storm event on the regional aerosol optical properties and radiation budget in northern India is analyzed. The dust storm event lasted from 17 to 22 April 2010 and the Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) estimated total dust emissions of 7.5 Tg over the model domain. Both in situ (AERONET – Aerosol Robotic Network) and satellite observations show significant increase (> 50%) in local to regional scale aerosol optical depth (AOD) and decrease (> 70%) in the Ångström exponent (α) during this period. Amongst the AERONET sites in this region, Kanpur was influenced the most, where the AOD reached up to 2.1 and the α decreased to −0.09 during the dust storm period. The WRF-Chem model reproduced the spatial and temporal distributions of dust plumes and aerosol optical properties but generally underestimated the AOD. The average MODIS and WRF-Chem AOD (550 nm) values in a subregion (70–80° E, 25–30° N) affected the most by the dust storm are estimated as 0.80 ± 0.30 and 0.68 ± 0.28, respectively. Model results show that dust particles cool the surface and the top of the atmosphere, but warm the atmosphere itself. The radiative perturbation due to dust aerosols averaged over the subregion is estimated as −2.9 ± 3.1 W m−2 at the top of the atmosphere, 5.1 ± 3.3 W m−2 in the atmosphere and −8.0 ± 3.3 W m−2 at the surface. The simulated instantaneous cooling under the dust plume was much higher and reached −227 and −70 W m−2 at the surface and the top of the atmosphere, respectively. The impact of these radiative perturbations on the surface energy budget is estimated to be small on a regional scale but significant locally.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 148 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3