Author:
Zhou W.,Cohan D. S.,Henderson B. H.
Abstract
Abstract. Airborne measurements from two Texas Air Quality Study (TexAQS) field campaigns have been used to investigate changes of ozone production in Houston, Texas, from 2000 to 2006, a period of major emission reduction measures for petrochemical and other sources. Simultaneous declines in nitrogen oxides (NOx = NO + NO2) and highly reactive volatile organic compounds (HRVOCs) were observed between the two periods. We simulate HOx (OH and HO2) and organic radicals with a box model, the Dynamically Simple Model of Atmospheric Chemical Complexity, constrained by available airborne observations. Parameters such as total radical production, total OH reactivity of VOCs and ozone production rate (OPR) are computed to characterize the change of ozone production between 2000 and 2006 in the Houston area. The reduction in HRVOCs led to a decline in total radical production by 20–50%. Ozone production rates in the Houston area declined by 40–50% from 2000 to 2006, to which the reduction in NOx and HRVOCs made large contributions. Despite the significant decline in OPR, ozone production efficiency held steady, and VOC-sensitive conditions dominated during times of most rapid ozone formation, while the slow ozone formation continued to be NOx-limited. Our results highlight the importance of a balanced approach of ongoing HRVOC controls with NOx controls to further reduce O3 levels in the Houston area.
Reference38 articles.
1. Buzcu Guven, B., and Olaguer, E. P.: Ambient formaldehyde source attribution in Houston during TexAQS II and TRAMP, Atmos. Environ., 45, 4272–4280, 2011.
2. Cowling, E. B., Furiness, C., Dimitriades, B., Parrish, D., and Estes, M.: Final Rapid Science Synthesis Report: Findings from the Second Texas Air Quality Study (TexAQS II), 2007.
3. Daum, P. H., Kleinman, L. I., Springston, S. R., Nunnermacker, L. J., Lee, Y. N., Weinstein-Lloyd, J., Zheng, J., and Berkowitz, C. M.: Origin and properties of plumes of high ozone observed during the Texas 2000 Air Quality Study (TexAQS 2000), J. Geophys. Res.-Atmos., 109, D17306, https://doi.org/10.1029/2003jd004311, 2004.
4. Draxler, R.: Meteorological factors of ozone predictability at Houston, Texas, J. Air Waste Manage., 50, 259–271, 2000.
5. Emmerson, K. M. and Evans, M. J.: Comparison of tropospheric gas-phase chemistry schemes for use within global models, Atmos. Chem. Phys., 9, 1831–1845, https://doi.org/10.5194/acp-9-1831-2009, 2009.
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献