Glacier loss and vegetation expansion alter organic and inorganic carbon dynamics in high-mountain streams
-
Published:2023-06-21
Issue:12
Volume:20
Page:2301-2316
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Robison Andrew L.ORCID, Deluigi Nicola, Rolland Camille, Manetti Nicolas, Battin Tom
Abstract
Abstract. High-mountain ecosystems are experiencing the acute effects of climate change, most visibly through glacier recession and the greening of the terrestrial environment. The streams draining these landscapes are affected by these shifts, integrating hydrologic, geologic, and biological signals across the catchment. We examined the organic and inorganic carbon dynamics of streams in four Alpine catchments in Switzerland to assess how glacier loss and vegetation expansion are affecting the carbon cycle of these high-mountain ecosystems. We find that the organic carbon concentration and fluorescence properties associated with humic-like compounds increase with vegetation cover within a catchment, demonstrating the increasing importance of allochthonous dissolved organic carbon sources following glacier retreat. Meanwhile, streams transitioned from carbon dioxide sinks to sources with decreasing glacier coverage and increased vegetation coverage, with chemical weathering and soil respiration likely determining the balance. Periods of sink behavior were also observed in non-glaciated streams, possibly indicating that the chemical consumption of carbon dioxide could be more common in high-mountain, minimally vegetated catchments than previously known. Together, these results demonstrate the dramatic shifts in carbon dynamics of high-mountain streams following glacier recession, with significant changes to both the organic and inorganic carbon cycles. The clear link between the terrestrial and aquatic zones further emphasizes the coupled dynamics with which all hydrologic and biogeochemical changes in these ecosystems should be considered, including the carbon sink or source potential of montane ecosystems.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference92 articles.
1. Anderson, S. P., Drever, J. I., and Humphrey, N. F.: Chemical weathering in glacial environments, Geology, 25, 399–402, https://doi.org/10.1130/0091-7613(1997)025<0399:CWIGE>2.3.CO, 1997. 2. Begum, M. S., Park, J. H., Yang, L., Shin, K. H., and Hur, J.: Optical and molecular indices of dissolved organic matter for estimating biodegradability and resulting carbon dioxide production in inland waters: A review, Water Res., 228, 119362, https://doi.org/10.1016/j.watres.2022.119362, 2023. 3. Beniston, M., Farinotti, D., Stoffel, M., Andreassen, L. M., Coppola, E., Eckert, N., Fantini, A., Giacona, F., Hauck, C., Huss, M., Huwald, H., Lehning, M., López-Moreno, J.-I., Magnusson, J., Marty, C., Morán-Tejéda, E., Morin, S., Naaim, M., Provenzale, A., Rabatel, A., Six, D., Stötter, J., Strasser, U., Terzago, S., and Vincent, C.: The European mountain cryosphere: a review of its current state, trends, and future challenges, The Cryosphere, 12, 759–794, https://doi.org/10.5194/tc-12-759-2018, 2018. 4. Bergstrom, A., Koch, J. C., O'Nee, S., and Baker, E.: Seasonality of solute flux and water source chemistry in a coastal glacierized watershed undergoing rapid change: Wolverine Glacier watershed, Alaska, Water Resour. Res., 57, e2020WR028725, https://doi.org/10.1029/2020WR028725, 2021. 5. Bernhardt, E. S., Heffernan, J. B., Grimm, N. B., Stanley, E. H., Harvey, J. W., Arroita, M., Appling, A. P., Cohen, M. J., Mcdowell, W. H., Hall, R. O., Read, J. S., Roberts, B. J., Stets, E. G., and Yackulic, C. B.: The metabolic regimes of flowing waters, Limnol. Oceanogr., 63, S99–S118, https://doi.org/10.1002/lno.10726, 2018.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|