RIMBAY – a multi-approximation 3D ice-dynamics model for comprehensive applications: model description and examples
-
Published:2014-01-07
Issue:1
Volume:7
Page:1-21
-
ISSN:1991-9603
-
Container-title:Geoscientific Model Development
-
language:en
-
Short-container-title:Geosci. Model Dev.
Author:
Thoma M., Grosfeld K., Barbi D.ORCID, Determann J., Goeller S., Mayer C., Pattyn F.ORCID
Abstract
Abstract. Glaciers and ice caps exhibit currently the largest cryospheric contributions to sea level rise. Modelling the dynamics and mass balance of the major ice sheets is therefore an important issue to investigate the current state and the future response of the cryosphere in response to changing environmental conditions, namely global warming. This requires a powerful, easy-to-use, versatile multi-approximation ice dynamics model. Based on the well-known and established ice sheet model of Pattyn (2003) we develop the modular multi-approximation thermomechanic ice model RIMBAY, in which we improve the original version in several aspects like a shallow ice–shallow shelf coupler and a full 3D-grounding-line migration scheme based on Schoof's (2007) heuristic analytical approach. We summarise the full Stokes equations and several approximations implemented within this model and we describe the different numerical discretisations. The results are cross-validated against previous publications dealing with ice modelling, and some additional artificial set-ups demonstrate the robustness of the different solvers and their internal coupling. RIMBAY is designed for an easy adaption to new scientific issues. Hence, we demonstrate in very different set-ups the applicability and functionality of RIMBAY in Earth system science in general and ice modelling in particular.
Publisher
Copernicus GmbH
Reference67 articles.
1. Arakawa, A. and Lamb, V. R.: Methods of computational physics, Vol. 17, Academic Press, 1977. 2. Barbi, D., Lohmann, G., Grosfeld, K., and Thoma, M.: Ice sheet dynamics within an Earth system model: coupling and first results on ice stability and ocean circulation, Geosci. Model Dev. Discuss., 6, 1–35, https://doi.org/10.5194/gmdd-6-1-2013, 2013. 3. Bindschadler, R. A., Nowicki, S., Abe-Ouchi, A., Aschwanden, A., Choi, H., Fastook, J., Granzow, G., Greve, R., Gutowski, G., Herzfeld, U., Jackson, C., Johnson, J., Khroulev, C., Levermann, A., Lipscomb, W. H., Martin, M. A., Morlighem, M., Parizek, B. R., Pollard, D., Price, S. F., Ren, D., Saito, F., Sato, T., Seddik, H., Seroussi, H., Takahashi, K., Walker, R., and Wang, W. L.: Ice-sheet model sensitivities to environmental forcing and their use in projecting future sea level (the SeaRISE project), J. Glaciol., 59, 195–224, https://doi.org/10.3189/2013JoG12J125, 2013. 4. Bougamont, M., Price, S., Christoffersen, P., and Payne, A. J.: Dynamic patterns of ice stream flow in a 3-D higher-order ice sheet model with plastic bed and simplified hydrology, J. Geophys. Res., 116, 1–13, https://doi.org/10.1029/2011JF002025, 2011. 5. Bueler, E., Lingle, C. S., Kallen-Brown, J. A., Covey, D. N., and Bowman, L. N.: Exact solutions and verification of numerical models for isothermal ice sheets, J. Glaciol., 51, 291–306, https://doi.org/10.3189/172756505781829449, 2005.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|