Use of regional climate model simulations as input for hydrological models for the Hindukush–Karakorum–Himalaya region

Author:

Akhtar M.,Ahmad N.,Booij M. J.

Abstract

Abstract. The most important climatological inputs required for the calibration and validation of hydrological models are temperature and precipitation that can be derived from observational records or alternatively from regional climate models (RCMs). In this paper, meteorological station observations and results of the PRECIS (Providing REgional Climate for Impact Studies) RCM driven by the outputs of reanalysis ERA-40 data and HadAM3P general circulation model (GCM) results are used as input in the hydrological model. The objective is to investigate the effect of precipitation and temperature simulated with the PRECIS RCM nested in these two data sets on discharge simulated with the HBV model for three river basins in the Hindukush-Karakorum-Himalaya (HKH) region. Three HBV model experiments are designed: HBV-Met, HBV-ERA and HBV-Had where HBV is driven by meteorological station data and by the outputs from PRECIS nested with ERA-40 and HadAM3P data, respectively. Present day PRECIS simulations possess strong capacity to simulate spatial patterns of present day climate characteristics. However, there also exist some quantitative biases in the HKH region, where PRECIS RCM simulations underestimate temperature and overestimate precipitation with respect to CRU observations. The calibration and validation results of the HBV model experiments show that the performance of HBV-Met is better than the HBV models driven by the PRECIS outputs. However, using input data series from sources different from the data used in the model calibration shows that HBV models driven by the PRECIS outputs are more robust compared to HBV-Met. The Gilgit and Astore river basin, which discharges are depending on the preceding winter precipitation, have higher uncertainties compared to the Hunza river basin which discharge is driven by the energy inputs. The smaller uncertainties in the Hunza river basin may be because of the stable behavior of the input temperature series compared to the precipitation series. The resulting robustness and uncertainty ranges of the HBV models suggest that in data sparse regions such as the HKH region data from regional climate models may be used as input in hydrological models for climate scenarios studies.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3