Livestock redistribute runoff and sediments in semi-arid rangeland areas

Author:

Sarah P.,Zonana M.

Abstract

Abstract. Semi-arid areas where grazing is the main land use exhibit a "three-phase-mosaic" pattern of dominant surface patches: shrubs, trampling routes, and intershrub areas. This pattern differs from the "two-phase mosaic" seen in grazing-free semi-arid areas. The patches might create a positive feedback process in which enhanced infiltration beneath shrubs minimizes overland flow from under their canopies, thereby strengthening the sink–source mechanism by which overland flow generated between shrubs rapidly infiltrates into the soil beneath them, where it deposits soil particles, litter, nutrients and organic matter, thereby enhancing infiltration by changing the local microtopography, and improving soil properties. To analyze sink–source relationships among the patches in grazed areas in rangelands of the semi-arid northern Negev region of Israel, we constructed small runoff plots, 0.25–1.0 m2 in area, of five types: shrub (Sarcopoterium spinosum), intershrub, route, route–shrub combination, and intershrub–shrub combination. The shrubs always occupied the downslope part of the plot. Overland flow and sediment deposits were measured in all plots during 2007/8 and 2008/9. The combined plots yielded much less overland flow and sediments than intershrub, routes and shrub ones, indicating that the shrubs absorbed almost all the yields of the upper part of their plots. The shrubs generated less runoff and sediments than routes and intershrubs; runoff flows from the routes and intershrubs were similar; sediment yield was highest in the intershrubs. Thus, runoff yield exhibited a two-phase mosaic pattern, and sediment yield, i.e., soil erosion, a three-phase mosaic pattern.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Earth-Surface Processes,Geochemistry and Petrology,Geology,Geophysics,Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3