Optimizing wind farm control through wake steering using surrogate models based on high-fidelity simulations
-
Published:2020-03-05
Issue:1
Volume:5
Page:309-329
-
ISSN:2366-7451
-
Container-title:Wind Energy Science
-
language:en
-
Short-container-title:Wind Energ. Sci.
Author:
Hulsman PaulORCID, Andersen Søren JuhlORCID, Göçmen TuhfeORCID
Abstract
Abstract. This paper aims to develop fast and reliable surrogate models for yaw-based wind farm control. The surrogates, based on polynomial chaos expansion (PCE), are built using high-fidelity flow simulations coupled with aeroelastic simulations of the turbine performance and loads.
Developing a model for wind farm control is a challenging control problem due to the time-varying dynamics of the wake.
The wind farm control strategy is optimized for both the power output and the loading of the turbines.
The optimization performed using two Vestas V27 turbines in a row for a specific atmospheric condition suggests that a power gain of almost 3%±1% can be achieved at close spacing by yawing the upstream turbine more than 15∘. At larger spacing the optimization shows that
yawing is not beneficial as the optimization reverts to normal operation. Furthermore, it was also identified that a reduction in the equivalent loads was obtained at the cost of power production. The total power gains are discussed in relation to the associated model errors and the uncertainty of the surrogate models used in the optimization, as well as the implications for wind farm control.
Publisher
Copernicus GmbH
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference50 articles.
1. Anderson, M.: Horizontal axis wind turbines in yaw, in: Wind Energy Workshop,
57–67, Multi-Science Publishing, Proceedings of the First BWEA Wind Energy Workshop, 1979. a 2. Annoni, J., Fleming, P., Scholbrock, A., Roadman, J., Dana, S., Adcock, C., Porte-Agel, F., Raach, S., Haizmann, F., and Schlipf, D.: Analysis of control-oriented wake modeling tools using lidar field results, Wind Energ. Sci., 3, 819–831, https://doi.org/10.5194/wes-3-819-2018, 2018. a, b, c 3. Bartl, J., Mühle, F., Schottler, J., Sætran, L., Peinke, J., Adaramola, M., and Hölling, M.: Wind tunnel experiments on wind turbine wakes in yaw: effects of inflow turbulence and shear, Wind Energ. Sci., 3, 329–343, https://doi.org/10.5194/wes-3-329-2018, 2018a. a 4. Bartl, J., Mühle, F., and Sætran, L.: Wind tunnel study on power output and yaw moments for two yaw-controlled model wind turbines, Wind Energ. Sci., 3, 489–502, https://doi.org/10.5194/wes-3-489-2018, 2018b. a 5. Bastankhah, M. and Porté-Agel, F.: A new analytical model for wind-turbine
wakes, Renew. Energ., 70, 116–123, 2014. a
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|