Internet-of-things-based four-dimensional high-density electrical instrument for geophysical prospecting

Author:

Zhou Keyu,Zhang QishengORCID,Liu Yongdong,Wu Zhen,Lin Zucan,Zhao Bentian,Jiang Xingyuan,Li Pengyu

Abstract

Abstract. The high-density electrical method is a primary method used in shallow geophysical prospecting. Due to the rapid industrial development that has taken place in recent years, the function and performance of high-density electrical instruments have been considerably improved in several aspects. However, most of the electrical instruments currently available on the market still exhibit some shortcomings, such as being bulky, heavy, limited in their data acquisition accuracy, and difficult to connect to the Internet for remote monitoring. To address these problems, this study developed a new multifunctional four-dimensional (4D) high-density electrical instrument based on remote wireless communication technology. The system is small and lightweight, includes an integrated transceiver, has high data acquisition accuracy, and is capable of remote wireless real-time control. In this study, the hardware circuit was designed. The Arm all-in-one (AIO) LJD-eWinV5-ST7 with a 154.4 cm × 87 cm, 800 × 480 high-brightness wide-temperature-range display is used as the host computer, which has the advantages of small size, low power consumption, and abundant hardware resources. Internet of things (IoT) technology is incorporated in the system, and a 4G module is employed to provide a real-time remote control and data acquisition monitoring system based on the cloud platform. Tests showed that this instrument is stable and convenient to use and can meet the requirements for use in field prospecting.

Funder

National Natural Science Foundation of China

PetroChina Innovation Foundation

Fundamental Research Funds for the Central Universities

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Reference27 articles.

1. Chen, M., Meng, Y., Wang, J., and Liu, M.: Geological hazards monitoring system based on IoT, Science and Technology Information, 13, 111–117, 2015.

2. Di, Q., Ni, D., Wang, R., and Wang, M.: High-density resistivity image, Prog. Geophys., 18, 323–326, 2003.

3. Dong, H. and Wang, C.: Development and application of 2D resistivity imaging surveys, Earth Sci. Front., 10, 171–176, 2003.

4. Dong, Y. R. and Nie, Y. F.: Researches and designs on smart vehicles parking system based on NB-IoT, J. Nanchang Hangkong University (Natural Sciences), 3, 95–99, 2017.

5. Gu, X., Nie, X., Zhou, J., and Wang, J.: Groundwater flow rate and direction detecting through high density electrical method instrument, Coal Geology of China, 22, 83–85, 2010.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dam Safety On-site Inspection and Test;Hydroscience and Engineering;2024

2. Development of an expendable current profiler and simulation of passive sources;Measurement Science and Technology;2023-05-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3