The impact of SCIAMACHY near-infrared instrument calibration on CH<sub>4</sub> and CO total columns

Author:

Gloudemans A. M. S.,Schrijver H.,Kleipool Q.,van den Broek M. M. P.,Straume A. G.,Lichtenberg G.,van Hees R. M.,Aben I.,Meirink J. F.

Abstract

Abstract. The near-infrared spectra measured with the SCIAMACHY instrument on board the ENVISAT satellite suffer from several instrument calibration problems. The effects of three important instrument calibration issues on the retrieved methane (CH4) and carbon monoxide (CO) total columns have been investigated: the effects of the growing ice layer on the near-infrared detectors, the effects of the orbital variation of the instrument dark signal, and the effects of the dead/bad detector pixels. Corrections for each of these instrument calibration issues have been defined. The retrieved CH4 and CO total columns including these corrections show good agreement with CO measurements from the MOPITT satellite instrument and with CH4 model calculations by the chemistry transport model TM3. Using a systematic approach, it is shown that all three instrument calibration issues have a significant effect on the retrieved CH4 and CO total columns. However, the impact on the CH4 total columns is more pronounced than for CO, because of its smaller variability. Results for three different wavelength ranges are compared and show good agreement. The growing ice layer and the orbital variation of the dark signal show a systematic, but time-dependent effect on the retrieved CH4 and CO total columns, whereas the effect of the dead/bad pixels is rather unpredictable: some dead pixels show a random effect, some more systematic, and others no effect at all. The importance of accurate corrections for each of these instrument calibration issues is illustrated using examples where inaccurate corrections lead to a wrong interpretation of the results.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3