Modelling the effect of aggregates on N<sub>2</sub>O emission from denitrification in an agricultural peat soil

Author:

Stolk P. C.,Hendriks R. F. A.,Jacobs C. M. J.,Moors E. J.,Kabat P.

Abstract

Abstract. Nitrous oxide (N2O) emissions are highly variable in time, with high peak emissions lasting a few days to several weeks and low background emissions. This temporal variability is poorly understood which hampers the simulation of daily N2O emissions. In structured soils, like clay and peat, aggregates hamper the diffusion of oxygen, which leads to anaerobic microsites in the soil, favourable for denitrification. Diffusion of N2O out of the aggregates is also hampered, which leads to delayed emissions and increased reduction of N2O to N2. In this model simulation study we investigate the effect of aggregates in soils on the N2O emissions. We present a parameterization to simulate the effects of aggregates on N2O production by denitrification and on N2O reduction. The parameterization is based on the mobile-immobile model concept. It was implemented in a field-scale hydrological-biogeochemical model combination. We compared the simulated fluxes with observed fluxes from a fertilized and drained peat soil under grass. The results of this study show that aggregates strongly affect the simulated N2O emissions: peak emissions are lower, whereas the background emissions are slightly higher. Including the effect of aggregates caused a 40% decrease in the simulated annual emissions relative to the simulations without accounting for the effects of aggregates. The new parameterization significantly improved the model performance regarding simulation of observed daily N2O fluxes; r2 and RMSE improved from 0.11 and 198 g N2O-N ha−1 d−1 to 0.41 and 40 g N2O-N ha−1 d−1, respectively. Our analyses of the model results show that aggregates have a larger impact on the reduction than on the production of N2O. Reduction of N2O is more sensitive to changes in the drivers than production of N2O and is in that sense the key to understanding N2O emissions from denitrification. The effects of changing environmental conditions on reduction of N2O relative to N2O production strongly depend on the NO3 content of the soil. More anaerobic conditions have hardly any effect on the ratio of production to reduction if NO3 is abundant, but will decrease this ratio if NO3 is limiting. In the first case the emissions will increase, whereas in the second case the emissions will decrease. This study suggests that the current knowledge of the hydrological, biogeochemical and physical processes may be sufficient to understand the observed N2O fluxes from a fertilized clayey peatland. Further research is needed to test how aggregates affect the N2O fluxes from other soils or soils with different fertilization regimes.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Arah, J. R. M.: Modelling spatial and temporal variability of denitrification, Biol. Fert. Soils, 9, 71–77, 1990.

2. Arah, J. R. M. and Smith, K. A.: Steady-state denitrification in aggregated soils: a mathematical model, Eur. J. Soil Sci., 40, 139–149, 1989.

3. Berner, R. A.: Principles of chemical sedimentology, Mc-Graw-Hill, New York, 240 pp., 1971.

4. Campolongo, F., Kleijnen, J., and Andres, T.: Screening methods, in: Sensitivity analysis, edited by: Saltelli, A., Chan, K., and Scott, E. M., John Wiley & Sons Ltd., Chichester, England, 2001.

5. Chen, D., Li, Y., Grace, P., and Mosier, A.: N2O emissions from agricultural lands: a synthesis of simulation approaches, Plant Soil, 309, 169–189, 2008.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3