A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau
-
Published:2015-03-13
Issue:1
Volume:6
Page:109-124
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Curio J.ORCID, Maussion F.ORCID, Scherer D.ORCID
Abstract
Abstract. The Tibetan Plateau (TP) plays a key role in the water cycle of high Asia and its downstream regions. The respective influence of the Indian and East Asian summer monsoon on TP precipitation and regional water resources, together with the detection of moisture transport pathways and source regions are the subject of recent research. In this study, we present a 12-year high-resolution climatology of the atmospheric water transport (AWT) over and towards the TP using a new data set, the High Asia Refined analysis (HAR), which better represents the complex topography of the TP and surrounding high mountain ranges than coarse-resolution data sets. We focus on spatiotemporal patterns, vertical distribution and transport through the TP boundaries. The results show that the mid-latitude westerlies have a higher share in summertime AWT over the TP than assumed so far. Water vapour (WV) transport constitutes the main part, whereby transport of water as cloud particles (CP) also plays a role in winter in the Karakoram and western Himalayan regions. High mountain valleys in the Himalayas facilitate AWT from the south, whereas the high mountain regions inhibit AWT to a large extent and limit the influence of the Indian summer monsoon. No transport from the East Asian monsoon to the TP could be detected. Our results show that 36.8 ± 6.3% of the atmospheric moisture needed for precipitation comes from outside the TP, while the remaining 63.2% is provided by local moisture recycling.
Funder
Bundesministerium für Bildung und Forschung Deutsche Forschungsgemeinschaft
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference49 articles.
1. An, Z., Colman, S. M., Zhou, W., Li, X., Brown, E. T., Jull, A. J. T., Cai, Y., Huang, Y., Lu, X., Chang, H., Song, Y., Sun, Y., Xu, H., Liu, W., Jin, Z., Liu, X., Cheng, P., Liu, Y., Ai, L., Li, X., Liu, X., Yan, L., Shi, Z., Wang, X., Wu, F., Qiang, X., Dong, J., Lu, F., and Xu, X.: Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka., Sci. Rep., 2, 619, https://doi.org/10.1038/srep00619, 2012. 2. Araguás-Araguás, L., Froehlich, K., and Rozanski, K.: Stable isotope composition of precipitation over southeast Asia, J. Geophys. Res., 103, 28721–28742, https://doi.org/10.1029/98JD02582, 1998. 3. Bin, C., Xiang-De, X., and Tianliang, Z.: Main moisture sources affecting lower Yangtze River Basin in boreal summers during 2004-2009, Int. J. Climatol., 33, 1035–1046, https://doi.org/10.1002/joc.3495, 2013. 4. Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J. G., Frey, H., Kargel, J. S., Fujita, K., Scheel, M., Bajracharya, S., and Stoffel, M.: The state and fate of Himalayan glaciers, Science, 336, 310–314, https://doi.org/10.1126/science.1215828, 2012. 5. Bollasina, M. and Nigam, S.: The summertime "heat" low over Pakistan/northwestern India: evolution and origin, Clim. Dynam., 37, 957–970, https://doi.org/10.1007/s00382-010-0879-y, 2010.
Cited by
161 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|