Detection and predictive modeling of chaos in finite hydrological time series

Author:

Khan S.,Ganguly A. R.,Saigal S.

Abstract

Abstract. The ability to detect the chaotic signal from a finite time series observation of hydrologic systems is addressed in this paper. The presence of random and seasonal components in hydrological time series, like rainfall or runoff, makes the detection process challenging. Tests with simulated data demonstrate the presence of thresholds, in terms of noise to chaotic-signal and seasonality to chaotic-signal ratios, beyond which the set of currently available tools is not able to detect the chaotic component. The investigations also indicate that the decomposition of a simulated time series into the corresponding random, seasonal and chaotic components is possible from finite data. Real streamflow data from the Arkansas and Colorado rivers are used to validate these results. Neither of the raw time series exhibits chaos. While a chaotic component can be extracted from the Arkansas data, such a component is either not present or can not be extracted from the Colorado data. This indicates that real hydrologic data may or may not have a detectable chaotic component. The strengths and limitations of the existing set of tools for the detection and modeling of chaos are also studied.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 38 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3