Area, elevation and mass changes of the two southernmost ice caps of the Canadian Arctic Archipelago between 1952 and 2014
-
Published:2015-08-07
Issue:4
Volume:9
Page:1535-1550
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Papasodoro C., Berthier E.ORCID, Royer A., Zdanowicz C.ORCID, Langlois A.
Abstract
Abstract. Grinnell and Terra Nivea Ice Caps are located on the southern Baffin Island, Nunavut, in the Canadian Arctic Archipelago. These relatively small ice caps have received little attention compared to the much larger ice masses further north. Their evolution can, however, give valuable information about the impact of the recent Arctic warming at lower latitudes (i.e. ~ 62.5° N). In this paper, we measure or estimate historical and recent changes of area, elevation and mass of both ice caps using in situ, airborne and spaceborne data sets, including imagery from the Pléiades satellites. The area of Terra Nivea Ice Cap has decreased by 34 % since the late 1950s, while that of Grinnell Ice Cap has decreased by 20 % since 1952. For both ice caps, the areal reduction accelerated at the beginning of the 21st century. The estimated glacier-wide mass balance was −0.37 ± 0.21 m a−1 water equivalent (w.e.) over Grinnell Ice Cap for the 1952–2014 period, and −0.47 ± 0.16 m a−1 w.e. over Terra Nivea Ice Cap for the 1958/59–2014 period. Terra Nivea Ice Cap has experienced an accelerated rate of mass loss of −1.77 ± 0.36 m a−1 w.e. between 2007 and 2014. This rate is 5.9 times as negative when compared to the 1958/59–2007 period (−0.30 ± 0.19 m a−1 w.e.) and 2 times as negative when compared to the mass balance of other glaciers in the southern parts of Baffin Island over the 2003–2009 period. A similar acceleration in mass loss is suspected for the Grinnell Ice Cap, given the calculated elevation changes and the proximity to Terra Nivea Ice Cap. The recent increase in mass loss rates for these two ice caps is linked to a strong near-surface regional warming and a lengthening of the melt season into the autumn that may be indirectly strengthened by a later freezing of sea ice in the Hudson Strait sector. On a methodological level, our study illustrates the strong potential of Pléiades satellite data to unlock the under-exploited archive of old aerial photographs.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference62 articles.
1. Andrews, J. T., Holdsworth, G., and Jacobs, J. D.: Glaciers of the Arctic Islands. Glaciers of Baffin Island, USGS Professional Paper 1386-J-1, USGS, J162–J198, 2002. 2. Astrium: Pléiades Imagery User Guide, Airbus Defence and Space, Geo-Information Services, Toulouse, 2012. 3. Barrand, N. E., Murray, T., James, T. D., Barr, S. L., and Mills, J. P.: Instruments and Methods Optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control points, J. Glaciol., 55, 106–116, 2009. 4. Berthier, E. and Toutin, T.: SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska, Remote Sens. Environ., 112, 2443–2454, https://doi.org/10.1016/j.rse.2007.11.004, 2008. 5. Berthier, E., Le Bris, R., Mabileau, L., Testut, L., and Rémy, F.: Ice wastage on the Kerguelen Islands (49° S, 69° E) between 1963 and 2006, J. Geophys. Res., 114, F03005, https://doi.org/10.1029/2008JF001192, 2009.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|