Options to accelerate ozone recovery: ozone and climate benefits
-
Published:2010-08-18
Issue:16
Volume:10
Page:7697-7707
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Daniel J. S.,Fleming E. L.,Portmann R. W.,Velders G. J. M.,Jackman C. H.,Ravishankara A. R.
Abstract
Abstract. Hypothetical reductions in future emissions of ozone-depleting substances (ODSs) and N2O are evaluated in terms of effects on equivalent effective stratospheric chlorine (EESC), globally-averaged total column ozone, and radiative forcing through 2100. Due to the established success of the Montreal Protocol, these actions can have only a fraction of the impact on ozone depletion that regulations already in force have had. If all anthropogenic ODS and N2O emissions were halted beginning in 2011, ozone is calculated to be higher by about 1–2% during the period 2030–2100 compared to a case of no additional restrictions. Direct radiative forcing by 2100 would be about 0.23 W/m2 lower from the elimination of anthropogenic N2O emissions and about 0.005 W/m2 lower from the destruction of the chlorofluorocarbon (CFC) bank. Due to the potential impact of N2O on future ozone levels, we provide an approach to incorporate it into the EESC formulation, which is used extensively in ozone depletion analyses. The ability of EESC to describe total ozone changes arising from additional ODS and N2O controls is also quantified.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference34 articles.
1. Chipperfield, M. P. and Feng, W.: Comment on: Stratospheric ozone depletion at northern mid-latitudes in the 21st century: The importance of future concentrations of greenhouse gases nitrous oxide and methane, Geophys. Res. Lett., 30(7), 1389, https://doi.org/10.1029/2002GL016353, 2003. 2. Clarke, L., Edmonds, J., Jacoby, H., Pitcher, H., Reilly, J., and Richels, R.: Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations, Sub-report 2.1A of Synthesis and Assessment Product 2.1: Report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research, Department of Energy, Office of Biological & Environmental Research, Washington, DC, 154 pp., 2007. 3. Crutzen, P. J.: The influence of nitrogen oxides on the atmospheric ozone content, Q. J. Roy. Meteorol. Soc., 96, 320–325, 1970. 4. Daniel, J. S., Solomon, S., and Albritton, D. L.: On the evaluation of halocarbon radiative forcing and global warming potentials, J. Geophys. Res., 100(D1), 1271–1285, 1995. 5. Daniel, J. S., Solomon, S., Portmann, R. W., and Garcia, R. R.: Stratospheric ozone destruction: The importance of bromine relative to chlorine, J. Geophys. Res., 104(D19), 23871–23880, 1999.
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|