Atmospheric transport of persistent semi-volatile organic chemicals to the Arctic and cold condensation in the mid-troposphere – Part 2: 3-D modeling of episodic atmospheric transport

Author:

Zhang L.,Ma J.,Tian C.,Li Y.,Hung H.

Abstract

Abstract. Two 3-dimensional global atmospheric transport models for persistent organic pollutants (POPs) have been employed to investigate the association between the large-scale atmospheric motions and poleward transports of persistent semi-volatile organic chemicals (SVOCs). We examine the modeled daily air concentration of α- and γ-hexachlorocyclohexane (HCH) over a period from 1997 through 1999 during which a number of episodic atmospheric transport events were detected in this modeling study. These events provide modeling evidence for improving the interpretation on the cold condensation effect and poleward atmospheric transport of SVOCs in the mid-troposphere. Two episodic transport events of γ-HCH (lindane) to the high Arctic (80–90° N), one from Asian and another from Eurasian sources, are reported in this paper. Both events suggest that the episodic atmospheric transports occurring in the mid-troposphere (e.g. from 3000 m to 5500 m height) are driven by atmospheric horizontal and vertical motions. The association of the transport events with atmospheric circulation is briefly discussed. Strong southerly winds, forced by the evolution of two semi-permanent high pressure systems over mid-high latitudes in the Northern Hemisphere, play an important role in the long-range transport (LRT) of HCHs to the high latitudes from its sources. Being consistent with the cold condensation effect and poleward atmospheric transport in a mean meridional atmospheric circulation simulated by a 2-D atmospheric transport model, as reported by the first part of this study, this modeling study indicates that cold condensation is likely occurring more intensively in the mid-troposphere where rapid declining air temperature results in condensed phase of the chemical over and near its source regions and where stronger winds convey the chemical more rapidly to the polar region during the episodic poleward atmospheric transport events.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3