Hyphenation of a EC / OC thermal-optical carbon analyzer to photo ionization time-of-flight mass spectrometry: a new off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter

Author:

Diab J.,Streibel T.,Cavalli F.,Lee S. C.,Saathoff H.,Mamakos T.,Chow J. C.,Chen L.-W. A.ORCID,Watson J. G.ORCID,Sippula O.,Zimmermann R.

Abstract

Abstract. Source apportionment and exposure of primary and secondary aerosols remains a challenging research field. In particular, the organic composition of primary particles and the formation mechanism of secondary organic aerosols (SOA) warrant further investigations. Progress in this field is strongly connected to the development of novel analytical techniques. In this study an off-line aerosol mass spectrometric technique based on filter samples, a hyphenated thermal/optical analyzer-photo ionization time of flight mass spectrometer (PI-TOFMS) system, was developed. The approach extends the capability of the widely used PM carbon analysis (for elemental/organic carbon (EC / OC)) by enabling the investigation of evolved gaseous species with soft and selective (resonance enhanced multiphoton ionization, REMPI) and non-selective photo ionization (single photon ionization, SPI) techniques. SPI was tuned to be medium soft to achieve comparability with results obtained by electron ionization (EI) aerosol mass spectrometer (AMS). Different PM samples including wood combustion emission samples, smog chamber samples from the reaction of ozone with different SOA precursors, and ambient samples taken at Ispra, Italy in winter as well as in summer were tested. The EC / OC-PI-TOFMS technique increases the understanding of the processes during the thermal/optical analysis and identifies marker substances for the source apportionment. Composition of oligomeric or polymeric species present in PM can be investigated by the analysis of the thermally breakdown products. In case of wood combustion, in addition to the well-known markers at m/z ratios of 60 and 73, two new characteristic masses (m/z 70 and 98) have been revealed as potentially linked to biomass burning. All four masses were also the dominant signals in an ambient sample taken in winter time in Ispra, Italy, confirming the finding that wood burning for residential heating is a major source for particulate matter (PM) in winter at this location. The summer sample from the same location showed no influence of wood burning, but seems to be dominated by SOA, which was confirmed from the comparison with chamber experiment samples. The experiments conducted with terpenes as precursors showed characteristic masses at m/z 58 and 82, which were not observable in any other emission samples and could serve as marker for SOA from terpenes.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Reference90 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3