The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1

Author:

Goldner A.,Herold N.,Huber M.ORCID

Abstract

Abstract. The mid-Miocene climatic optimum (MMCO) is an intriguing climatic period due to its above-modern temperatures in mid-to-high latitudes in the presence of close-to-modern CO2 concentrations. We use the recently released Community Earth System Model (CESM1.0) with a slab ocean to simulate this warm period, incorporating recent Miocene CO2 reconstructions of 400 ppm (parts per million). We simulate a global mean annual temperature (MAT) of 18 °C, ~4 °C above the preindustrial value, but 4 °C colder than the global Miocene MAT we calculate from climate proxies. Sensitivity tests reveal that the inclusion of a reduced Antarctic ice sheet, an equatorial Pacific temperature gradient characteristic of a permanent El Niño, increased CO2 to 560 ppm, and variations in obliquity only marginally improve model–data agreement. All MMCO simulations have an Equator to pole temperature gradient that is at least ~10 °C larger than that reconstructed from proxies. The MMCO simulation most comparable to the proxy records requires a CO2 concentration of 800 ppm. Our results illustrate that MMCO warmth is not reproducible using the CESM1.0 forced with CO2 concentrations reconstructed for the Miocene or including various proposed Earth system feedbacks; the remaining discrepancy in the MAT is comparable to that introduced by a CO2 doubling. The model's tendency to underestimate proxy derived global MAT and overestimate the Equator to pole temperature gradient suggests a major climate problem in the MMCO akin to those in the Eocene. Our results imply that this latest model, as with previous generations of climate models, is either not sensitive enough or additional forcings remain missing that explain half of the anomalous warmth and pronounced polar amplification of the MMCO.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3