On the parametrization of optical particle counter response including instrument-induced broadening of size spectra and a self-consistent evaluation of calibration measurements

Author:

Walser Adrian,Sauer DanielORCID,Spanu AntonioORCID,Gasteiger JosefORCID,Weinzierl BernadettORCID

Abstract

Abstract. Optical particle counters (OPCs) are common tools for the in situ measurement of aerosol particle number size distributions. As the actual quantity measured by OPCs is the intensity of light scattered by individual particles, it is necessary to translate the distribution of detected scattering signals into the desired information, i.e., the distribution of particle sizes. A crucial part in this challenge is the modeling of OPC response and the calibration of the instrument – in other words, establishing the relation between instrument-specific particle scattering cross-section and measured signal amplitude. To date, existing methods lack a comprehensive parametrization of OPC response, particularly regarding the instrument-induced broadening of signal amplitude distributions. This deficiency can lead to significant size distribution biases. We introduce an advanced OPC response model including a simple parametrization of the broadening effect and a self-consistent way to evaluate calibration measurements using a Markov chain Monte Carlo (MCMC) method. We further outline how to consistently derive particle number size distributions with realistic uncertainty estimates within this new framework. Based on measurements of particle standards for two OPCs, the Grimm model 1.129 (SkyOPC) and the DMT Passive Cavity Aerosol Spectrometer Probe (PCASP), we demonstrate that residuals between measured and modeled response can be substantially reduced when using the new approach instead of existing methods. More importantly, for the investigated set of measurements only the new approach yields results that conform with the true size distributions within the range of model uncertainty. The presented innovations will help improving the accuracy of OPC-derived size distributions and the assessment of their precision.

Funder

European Research Council

Helmholtz-Gemeinschaft

Seventh Framework Programme

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference49 articles.

1. Altmann, J. and Peters, C.: Proceedings of the 1992 European Aerosol Conference The adjustment of the particle size at a Sinclair-La Mer-Type Aerosol Generator, J. Sci., 23, 277–280, https://doi.org/10.1016/0021-8502(92)90403-I, 1992.

2. Barnard, J. C. and Harrison, L. C.: Monotonic responses from monochromatic optical particle counters, Appl. Optics, 27, 584–592, https://doi.org/10.1364/AO.27.000584, 1988.

3. Baumgardner, D. and Spowart, M.: Evaluation of the Forward Scattering Spectrometer Probe. Part III: Time Response and Laser Inhomogeneity Limitations, J. Atmos. Ocean. Tech., 7, 666–672, https://doi.org/10.1175/1520-0426(1990)007<0666:EOTFSS>2.0.CO;2, 1990.

4. Baumgardner, D., Strapp, W., and Dye, J. E.: Evaluation of the Forward Scattering Spectrometer Probe. Part II: Corrections for Coincidence and Dead-Time Losses, J. Atmos. Ocean. Tech., 2, 626–632, https://doi.org/10.1175/1520-0426(1985)002<0626:EOTFSS>2.0.CO;2, 1985.

5. Bayes, M. and Price, M.: An Essay towards Solving a Problem in the Doctrine of Chances. By the Late Rev. Mr. Bayes, F. R. S. Communicated by Mr. Price, in a Letter to John Canton, A. M. F. R. S., Royal Society of London, 1763.

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3